Những câu hỏi liên quan
H24
Xem chi tiết
NL
1 tháng 10 2019 lúc 22:11

ĐKXĐ:...

\(\Leftrightarrow x^2-2x+1+2020x-2019-2\sqrt{2020x-2019}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2020x-2019}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2020x-2019}-1=0\end{matrix}\right.\)

\(\Rightarrow x=1\)

Bình luận (0)
NA
Xem chi tiết
TN
Xem chi tiết
PA
21 tháng 5 2020 lúc 18:22

srtgb6yyyyyyyy

Bình luận (0)
 Khách vãng lai đã xóa
KA
24 tháng 5 2020 lúc 17:43

\(2018x^2-\left(m-2019\right)x-2020=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)

             \(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))

Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)

Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)

\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)

\(\Leftrightarrow x_1^2-x_2^2=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)

Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)

                                                                                      \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)

\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)

Vậy không có m để thỏa mãn bài toán 

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NH
Xem chi tiết
TC
1 tháng 4 2022 lúc 17:27

Đặt t=\(\sqrt{2019-x^{ }2}\)>0, nên \(t^2\)=2019-\(x^2\) hay \(x^2\)=2019-\(t^2\).

từ đề bài ta có: 2019-\(t^2\)-\(t^2\)-2017t=0

hay 2\(t^2\)+2017t-2019=0, nên t=1 và t=-2019/2<0 loại

t=1, nên \(x^2\)=2018, nên x=2018 hoặc x=-2018 thỏa điều kiện 2019-\(x^2\)>=0

Bình luận (0)
KD
Xem chi tiết
NT
9 tháng 2 2021 lúc 22:26

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)

Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)

\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)

Ta có: \(-8078x^2-12129x-18=0\)(2)

\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)

Bình luận (1)
LH
Xem chi tiết