Những câu hỏi liên quan
PB
Xem chi tiết
CT
30 tháng 3 2017 lúc 7:58

Đáp án D

Đặt t = 3sin x - 4cos x => -5 ≤ t ≤ 5 (dùng bất đẳng thức bunhiacopxki)

Ta có: y = (3sin x – 4cos x)2 – 6sin x + 8cos x

              =      t2 – 2t = (t – 2)2 -1

Do -5 ≤ t ≤ 5 => 0 ≤ (t – 2)2 ≤ 36 => min y = -1

Suy ra yêu cầu bài toán -1 ≥ 2m - 1 ⇔ m ≤ 0.

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 7 2018 lúc 6:38

Xét hàm số  y= ( 3sinx – 4cosx )2 – 6sinx + 8cosx

Đáp án B

Bình luận (0)
KT
Xem chi tiết
H24
26 tháng 9 2021 lúc 17:05

đặt \(3sinx-4cosx=t\) đk \(-5\le t\le5\) pt trên trở thành \(t^2-2t\ge2m-1\)

\(\left(t-1\right)^2\ge2m\Leftrightarrow m\le0\)

Bình luận (2)
NT
Xem chi tiết
NL
27 tháng 12 2022 lúc 19:05

Hàm xác định trên R khi và chỉ khi:

\(8cosx-6sinx-\left(3sinx-4cosx\right)^2-2m\ge0;\forall x\) (1)

Đặt \(3sinx-4cosx=t\)

\(\Rightarrow t^2=\left(3sinx-4cosx\right)^2\le\left(3^2+\left(-4\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le t\le5\)

(1) tương đương:

\(-2t-t^2-2m\ge0;\forall t\in\left[-5;5\right]\)

\(\Leftrightarrow2m\le-t^2-2t;\forall t\in\left[-5;5\right]\)

\(\Leftrightarrow2m\le\min\limits_{t\in\left[-5;5\right]}\left(-t^2-2t\right)\)

Xét hàm \(f\left(t\right)=-t^2-2t\) trên \(\left[-5;5\right]\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-5\right)=-15\) ; \(f\left(-1\right)=1\) ; \(f\left(5\right)=-35\)

\(\Rightarrow2m\le-35\Rightarrow m\le-\dfrac{35}{2}\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 4 2017 lúc 13:35

Đáp án B

Đặt t = 3sin x - 4 cos x => -5 ≤ t ≤ 5

Ta có: y = t2 – 2t + 2m – 1 = (t – 1)2 + 2m - 2

Với mọi t ta có (t – 1)2 ≥ 0 nên y ≥ 2m - 2 => min y = 2m - 2

Hàm số chỉ nhận giá trị dương ⇔ y > 0 ∀x ∈ R ⇔ min y > 0

⇔ 2m - 2 > 0 ⇔ m > 1

Bình luận (0)
PT
Xem chi tiết
NL
20 tháng 10 2019 lúc 17:10

\(\Leftrightarrow\left(3sinx-4cosx\right)^2-2\left(3sinx-4cosx\right)\le2m-1\)

Đặt \(3sinx-4cosx=5\left(\frac{3}{5}sinx-\frac{4}{5}cosx\right)=5sin\left(x-a\right)=t\)

\(\Rightarrow-5\le t\le5\)

BPT trở thành: \(t^2-2t+1\le2m\)

\(\Leftrightarrow\left(t-1\right)^2\le2m\)

Để pt nghiệm đúng với mọi x thì \(2m\ge\max\limits_{\left[-5;5\right]}\left(t-1\right)^2\)

\(\left(t-1\right)^2\le\left(-5-1\right)^2=36\)

\(\Rightarrow2m\ge36\Rightarrow m\ge18\)

\(2019-18+1=2002\) giá trị

Không đáp án nào đúng

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
9 tháng 3 2019 lúc 9:47

Chọn A

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 8 2019 lúc 11:42

Đáp án A

Đặt  

Yều cẩu bào toán trở thành: Tìm m để bất phương trình nghiệm đúng với mọi  

Từ đồ thị đã cho, ta suy ra đồ thị của hàm số  

Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 6 2017 lúc 17:42

Bình luận (0)