Tìm GTNN và GTLN của các biểu thức:
\(a,P=\sqrt{x}+\sqrt{2-x}\)
\(b,Q=\sqrt{x-2019}+\sqrt{2020-x}\)
Tìm GTNN và GTLN của các biểu thức:
\(a,P=\sqrt{x}+\sqrt{2-x}\)
\(b,Q=\sqrt{x-2019}+\sqrt{2020-x}\)
a, P>0
Có \(P^2=x+2\sqrt{x\left(2-x\right)}+2-x=2+2\sqrt{2x-x^2}=\sqrt{1-\left(x^2-2x+1\right)}+2=2+\sqrt{1-\left(x-1\right)^2}\)
Luôn có: \(1-\left(x-1\right)^2\le1\)=> \(0\le\sqrt{1-\left(x-1\right)^2}\le1\)<=> \(0\le2\sqrt{1-\left(x-1\right)^2}\le4\)
<=> \(2\le2+2\sqrt{1-\left(x-1\right)^2}\le2+2\)
<=> \(2\le P^2\le4\)
<=> \(\sqrt{2}\le P\le2\)(do P>0)
minP xảy ra <=> \(\sqrt{1-\left(x-1\right)^2}=0\)
<=> \(\left(x-1\right)^2=1\) <=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)(t/m)
maxP xảy ra<=> \(\sqrt{1-\left(x-1\right)^2}=1\)
<=> \(\left(x-1\right)^2=0\) <=> x=1(t/m)
b, Q>0 (đk :\(2019\le x\le2020\))
Có \(Q^2=x-2019+2\sqrt{\left(x-2019\right)\left(2020-x\right)}+2020-x=1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\)
Luôn có: \(0\le2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le\left(x-2019\right)+\left(2020-x\right)\)
<=> \(1\le1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le1+1\)
<=> \(1\le Q^2\le2\)
<=> \(1\le Q\le\sqrt{2}\)( do Q>0)
minQ=1 <=> \(\sqrt{\left(x-2019\right)\left(2020-x\right)}=0\)
<=> \(\left(x-2019\right)\left(2020-x\right)=0\)
<=> x=2019(tm) hoặc x=2020(t/m)
maxQ=\(\sqrt{2}\) <=> \(x-2019=2020-x\) <=> \(x=\frac{4039}{2}\) (tm)
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)
Tìm GTLN (nếu có) và GTNN (nếu có) của các biểu thức sau:
a) \(1+\sqrt{2-x},\sqrt{x-3}-2,1-3\sqrt{1-2x}\)
b) \(\sqrt{4-x^2};\sqrt{2x^2-x+3};1-\sqrt{-x^2+2x+5}\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Tìm GTNN của biểu thức:
\(M=2019\sqrt{x-2}+2020\sqrt{10-x}\)
Sửa đề: \(M=2019\sqrt{x-2}+2020\sqrt{10-y}\)
+Có: \(\sqrt{x-2}\ge với\forall x\\ \sqrt{10-y}\ge0với\forall x\\ \Rightarrow2019\sqrt{x-2}+2020\sqrt{10-y}\ge0\\ \Leftrightarrow M\ge0\)
+Dấu ''='' xảy ra khi
\(\sqrt{x-2}=0\\ \Leftrightarrow x=2\)
\(\sqrt{10-y}=0\\ \Leftrightarrow y=10\)
+Vậy \(M_{min}=0\) khi \(x=2,y=10\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
\(\sqrt{2+x}+\sqrt{2-x}-\sqrt{4-x^2}\). Tìm GTLN và GTNN của biểu thức
Tìm GTLN và GTNN của biểu thức có dạng:
a) A= \(\sqrt{x-1}+\sqrt{4-x}\)
b) B= \(\sqrt{x+1}+\sqrt{6-x}\)
Mọi người giải giúp em nhé
Tính hợp lí
(2018/2017-2019/2018+2020/2019)×(1/2-
1/3-1/6)×(1/2+1/3+1/4+...+1/2020)
Em cảm ơn
Tìm Max trước thôi nhé, Min nghĩ sau:V
a) đk: \(1\le x\le4\)
Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)
=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)
=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)
Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2
b) đk: \(-1\le x\le6\)
Tương tự sử dụng BĐT Bunhiacopxki:
\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)
Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)
Min:
Áp dụng BĐT \(\sqrt{A}+\sqrt{B}\ge\sqrt{A+B}\) . Dấu "=" xảy ra khi \(AB=0\):
\(A=\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(4-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
\(B=\sqrt{x+1}+\sqrt{6-x}\ge\sqrt{x+1+6-x}=\sqrt{7}\)
Dấu "=" xảy ra khi \(\left(x+1\right)\left(6-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\)
Tìm GTNN và GTLN của các biểu thức:
\(M=\sqrt{x+2}+\sqrt{6-x}\)