Những câu hỏi liên quan
KM
Xem chi tiết
KM
6 tháng 1 2016 lúc 8:25

de thi hoc ki cua tui day

Bình luận (0)
CU
6 tháng 1 2016 lúc 8:29

tui ko bít làm 

mới hok lớp 7 làm được chết liền

Bình luận (0)
DH
Xem chi tiết
DH
Xem chi tiết
AH
12 tháng 1 2020 lúc 9:53

Lời giải:

\((\sqrt{1993}+\sqrt{1995})^2=1993+1995+2.\sqrt{1993.1995}=3988+2\sqrt{(1994-1)(1994+1)}\)

\(=3988+2\sqrt{1994^2-1}< 3988+2\sqrt{1994^2}=3988+2.1994=7976\)

\(\Rightarrow \sqrt{1993}+\sqrt{1995}< \sqrt{7976}\) hay $\sqrt{1993}+\sqrt{1995}< 2\sqrt{1994}$

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NT
5 tháng 8 2022 lúc 23:35

a: \(=\dfrac{\left(2+\sqrt{3}-1\right)\cdot\sqrt{3}}{\sqrt{7+4\sqrt{3}-2-\sqrt{3}+1}}\)

\(=\dfrac{\left(\sqrt{3}+1\right)\cdot\sqrt{3}}{\sqrt{6+3\sqrt{3}}}=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{1}{2\sqrt{3}+3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{\sqrt{3}\left(2-\sqrt{3}\right)}{3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{2-\sqrt{3}}{\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\sqrt{3}}}\)

\(=\sqrt{\dfrac{8-6}{\sqrt{3}}}=\sqrt{\dfrac{2\sqrt{3}}{3}}\)

c: \(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...-\sqrt{1994}+\sqrt{1995}\)

\(=\sqrt{1995}-1\)

Bình luận (0)
TT
Xem chi tiết
AH
4 tháng 3 2019 lúc 0:27

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

Bình luận (0)
AH
4 tháng 3 2019 lúc 0:30

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

Bình luận (0)
AH
4 tháng 3 2019 lúc 0:32

Bài 3:

Ta thấy:

\(2x-x^2+7=8-(x^2-2x+1)=8-(x-1)^2\leq 8, \forall x\in\mathbb{R}\)

\(\Rightarrow 2+\sqrt{2x-x^2+7}\leq 2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow B=\frac{3}{2+\sqrt{2x-x^2+7}}\geq \frac{3}{2+2\sqrt{2}}\)

Vậy GTNN của $B$ là \(\frac{3}{2+2\sqrt{2}}\).

Đẳng thức xảy ra tại \((x-1)^2=0\Leftrightarrow x=1\)

Bình luận (0)
NT
Xem chi tiết
TD
2 tháng 9 2017 lúc 21:25

bài này sai đề ak

Bình luận (1)
NT
Xem chi tiết
NN
17 tháng 8 2017 lúc 12:38

http://lingcor.net/ref/52937

Bình luận (0)
LD
Xem chi tiết
MW
22 tháng 10 2017 lúc 22:20

nhân lượng liên hợp

Bình luận (0)
LD
23 tháng 10 2017 lúc 12:36

bạn có thể giải chi tiết hơn ko

Bình luận (0)
Na
Xem chi tiết
Na
11 tháng 11 2018 lúc 23:02

Cô Akai Haruma giúp e vs ạ

Bình luận (0)
NT
18 tháng 11 2022 lúc 14:03

loading...

Bình luận (0)