Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O). Gọi E,F là chân các đường cao hạ từ B và C; M là trung điểm BC, EF cắt đường tròn (O) tại hai điểm S,T; SM cắt (O) lần thứ hai ở K. Chứng minh rằng AK vuông góc với HT.
CHO tam giác ABC có 3 góc nhọn (AB<AC) NỘI TIẾP tam giác đường tròn (o) gọi H là trực tâm và M, N, P lần lượt là chân đường cao kẻ từ các đỉnh A, B, C của tam giác ABC.
a) CM:các tứ giác APHN và BPNC nội tiếp
b) CM; H LÀ tâm đường tròn nội tiếp tam giác MNP
VẼ hình hộ mk vs ạ
Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh AMACAMAC=AFECAFEC và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh \(\dfrac{AM}{AC}\)=\(\dfrac{AF}{EC}\) và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
1: góc AFB=góc AEB=góc ADB=90 độ
=>A,F,B,E,D cùng nằm trên 1 đường tròn
2: Xét ΔAFE và ΔACM có
góc FAE chung
góc AFE=góc ABE=góc ADE=góc MCA
=>ΔAFE đồng dạng với ΔACM
=>AE/AM=AF/AC
=>AM/AC=AE/AF
góc FAB=góc ACB
=>góc FBA=90 độ-góc ACB=góc EBC
Cho tam giác ABC nhọn nội tiếp (O) có trực tâm H; D,E,F thứ tự là chân đường cao hạ từ A,B,C. AD cắt (O) tại M khác A. ME,MF cắt (O) lần thứ hai tại P,Q. Gọi đường tròn (AH) cắt (O) và OA tại R,S. Chứng minh rằng 3 đường thẳng RS,BP,CQ đồng quy ?
Gọi I,T lần lượt là trung điểm HF, EF. Ta có \(\Delta FHD~\Delta FEC\)(g.g), trung tuyến tương ứng là DI,CT
Suy ra \(\widehat{ECT}=\widehat{HDI}\). Vì DI là đường trung bình \(\Delta HMF\) nên \(\widehat{HDI}=\widehat{HMF}=\widehat{ACQ}\)
Do đó \(\widehat{ECT}=\widehat{ACQ}\), suy ra C,T,Q thẳng hàng. Tương tự B,T,P thẳng hàng.
Mặt khác, theo một kết quả quen thuộc thì tứ giác EHFR điều hòa, suy ra RH là đường đối trung của \(\Delta REF\)
Lại có HS || EF vì cùng vuông góc OA. Suy ra (HF = (SE hay H,S đẳng giác trong \(\widehat{ERF}\)
Suy ra RS là trung tuyến của \(\Delta REF\) hay RS đi qua T.
Vậy RS,BP,CQ cùng đi qua T.
Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), E là giao điểm của đường tròn ngoại tiếp tam giác CDM và đường tròn ngoại tiếp tam giác BDN(E khác B). CMR: A,E,D thẳng hàng
Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp
Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)
Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800
Vậy thì A,E,D thẳng hàng (đpcm).
Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )
=> ^NBC = ^AMN ( cùng phụ với hai góc bằng nhau ) (1)
Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE
Nên ^NBD + ^MCD = ^NEM ( tính chất góc ngoài tứ giác nội tiếp )
Mà ^NBD + ^MCD + ^NAM = 1800
Suy ra ^NEM + ^NAM = 1800 . Vây AMEN nội tiếp
Do đó: ^AMN = ^AEN (2)
Từ (1) và (2) suy ra ^NBD = ^AEN
Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)
Nên ^DEN + ^AEN = 1800 => ^AED=1800 .
Vậy ba điểm A, E, D thẳng hàng (đpcm)
Cho tam giác ABC có 3 góc nhọn ( AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AD và đường kính AA'. Gọi E,F theo thứ tự là chân đường vuông góc hạ từ B và C xuống đường kính AA',gọi M là trung điểm BC.CM MD=ME=MF ( AEDB nt;DB.AC=AD.A'C; DE//A'C )
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O và có H là trực tâm.Gọi E,F lần lượt là các chân đường cao kẻ từ các đỉnh B và C của tam giacABC; M là trung điểm cạnh BC. chứng minh ;
a) các tứ giác AEHFva BCEF nội tiếp
b) AH=2OM và OA vuông góc với EF
Cho tam giác ABC có B A C ⏜ = 60 0 , A C = b , A B = c b > c . Đường kính EF của đường tròn ngoại tiếp tam giác ABC vuông góc với BC tại M (E thuộc cung lớn BC). Gọi I và J là chân đường vuông góc hạ từ E xuống các đường thẳng AB và AC. Gọi H và K là chân đường vuông góc hạ từ F xuống các đường thẳng AB và AC.
a) Chứng minh các tứ giác AIEJ, CMJE nội tiếp và E A . E M = E C . E I .
a) Ta có: A I E ^ = A J E ^ = 90 0 nên tứ giác AIEJ nội tiếp.
E M C ^ = E J C ^ = 90 0 nên tứ giác CMJE nội tiếp.
Xét tam giác Δ A E C v à Δ I E M , có
A C E ⏜ = E M I ⏜ ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác CMJE).
E A C ⏜ = E I M ⏜ ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác AIEJ).
Do đó hai tam giác Δ A E C ~ Δ I E M đồng dạng
⇒ A E E I = E C E M ⇒ E A . E M = E C . E I (đpcm)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi D,E,K lần lượt là chân đường cao kẻ từ A,B,C của tam giác ABC . H là trực tâm của tam giác ABC
a,CM: tứ giác HDCE nội tiếp
b, Gọi M là giao điểm của AH và (O). Chứng minh D là trung điểm của HM
c,Chứng minh: OA vuông góc với EK