Cho tỉ lệ thức a/b = c/d
Chứng minh a+b/b = c+d/d
Giúp mk nhé
Cho tỉ lệ thức a/b=c/d. Chứng tỏ ta có tỉ lệ thức ac/bd=(a+b)²/(b+d)²
Giúp mk nhé
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Vì \(\frac{a}{b}=k\)\(\Rightarrow a=bk\)
Vì\(\frac{c}{d}=k\)\(\Rightarrow c=dk\)
Có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{bd.k^2}{bd}=k^2\)\(\left(1\right)\)
Vì \(a=bk,c=dk\Rightarrow\)\(\frac{\left(a+b\right)^2}{\left(b+d\right)^2}\)\(=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{[k\left(b+d\right)]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)đpcm
chứng minh rằng từ tỉ lệ thức a/b = c/d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b/a-b = c+d/c-d
giúp mk vs lm xg mk tik cho
\(\frac{a}{b}=\frac{c}{d}\)(\(b,d\ne0\))
\(\Leftrightarrow ad=bc\)
\(\Leftrightarrow2ad=2bc\)
\(\Leftrightarrow ad-bc=bc-ad\)
\(\Leftrightarrow ad-bc+ac-bd=bc-ad+ac-bd\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(\(a-b,c-d\ne0\))
Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) Chứng minh:
1)\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) 2)\(\dfrac{a-b}{a}\)=\(\dfrac{c-d}{c}\)
giải giúp mk vss
Cho tỉ lệ thức: a/b= c/d. Chứng minh rằng ta có các tỉ lệ thức sau:ab/cd=a^2 - b^2= c^2- d^2
Các bạn giúp mk vs ạ
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
Cho tỉ lệ thức a/b = c/d
Chứng minh rằng ta có tỉ lệ thức sau: (a + b / c + d) ^2 = a^2 + b^2 = c^2 + d^2
Giúp em với nhé. Em là thành viên mới, mong được mọi người giúp đỡ nhiều nhiều :v
Cho tỉ lệ thức a/b=c/d . Chứng minh : (a+b/c+d)^2 = a^2+b^2/c^2+d^2
Các bạn giúp mình gấp nhé ! Mình đang cần . Cám ơn nhiều
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\
cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)
Gọi a/b=c/d=k(k khác 0)
Ta có:
a=bk
c=dk
VT:(\(\frac{a+b}{c+d}\))2 =(\(\frac{bk+b}{dk+d}\))2 =(\(\frac{b\left(k+1\right)}{d\left(k+1\right)}\))2 =(\(\frac{b}{d}\))2 (1)
VP:\(\frac{a^2+b^2}{c^2+d^2}\)=\(\frac{b^2k^2+b^2}{d^2k^2+d^2}\)=\(\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)=\(\frac{b^2}{d^2}\)=(\(\frac{b}{d}\))2 (2)
Từ (1) và (2) suy ra bằng nhau
câu 1. tìm x
5.7 / 0.35 = (-x) / 0.45
câu 2. chứng minh bằng tỉ lệ thức a/b = c/d (a ko thuộc b, c ko thuộc d) ta có thể suy ra tỉ lệ thức
a+b/a-b = c+d/c-d
giúp mk vs mk đag gấp
Cho tỉ lệ thức a/b=c/d chứng minh rằng
a,a+b/b=c+d/d b,a/a+b=c/c+d c,a-b/b=c-d/d d, a/a-b=c/c-d
Các bạn giúp mình nhé, cảm ơn nhiều
Ta có \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
b) \(\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
c) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
d) \(\frac{a}{b}=\frac{c}{d}\Rightarrow1:\frac{a}{b}=1:\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow1-\frac{b}{a}=1-\frac{d}{c}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\Rightarrow1:\frac{a-b}{a}=1:\frac{c-d}{c}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Đặt `a/b=c/d =k ->a=bk, c=dk`
`a,`
`(a+b)/b=(bk +b)/b=(b (k+1) )/b=k+1`
`(c+d)/d=(dk +d)/d=(d (k+1) )/d=k+1`
`-> (a+b)/b=(c+d)/d`
`b,`
`a/(a+b)=(bk)/(bk+b)=(bk)/(b(k+1) )=k/(k+1)`
`c/(c+d)=(dk)/(dk+d)=(dk)/(d(k+1) ) = k/(k+1)`
`-> a/(a+b)=c/(c+d)`
`c,`
`(a-b)/b=(bk-b)/b=(b(k-1) )/b=k-1`
`(c-d)/d=(dk-d)/d=(d(k-1) )/d=k-1`
`-> (a-b)/b=(c-d)/d`
`d,`
`a/(a-b) =(bk)/(bk-b)=(bk)/(b(k-1) )=k/(k-1)`
`c/(c-d)=(dk)/(dk-d)=(dk)/(d(k-1) )=k/(k-1)`
`-> a/(a-b)=c/(c-d)`
Cho tỉ lệ thức a/b = c/d. Chứng minh \(\frac{2a+3b}{2c+3d}=\frac{a+b}{c+d}\)(Giả thiết các tỉ số đều có nghĩa)
Giúp mình nhé.
cho tỉ lệ thức: a/b = c/d. chứng minh ta có tỉ lệ thức: a/b = a+c/b+d = a-c/b-d
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )