Cho sin=4/5 Tính GTBT A=tan^2-2cot^2
\(\frac{\sin\alpha+5\cos\alpha}{2\sin\alpha-3\cos\alpha}\)Tính GTBT biết: \(\tan\alpha=2\)
\(\tan\alpha=2\). Hãy tính GTBT:
a/ \(\frac{\sin\alpha+5\cos\alpha}{2\sin\alpha-3\cos\alpha}\)
b/\(\sin^2\alpha+2\sin\alpha.\cos\alpha-5\cos^2\alpha\)
a) cotα = 0,6 (0 < α < 90°). Tính 2tanα - 3cotα + sin2α
b) 0 < α < 90°, cos α = 4/5 . Tính 3sinα - 2cotα + tan2α
c) 0 < α < 90° , sin α = 3/5 . Tính tan α - cotα/cos2α
d) 0 < α < 90° , tanα = 2. Tính 4cos2α - 2sinα/cot α
cho \(0< \alpha< \frac{3\pi}{2}\) và \(sin\alpha=-\frac{2}{5}\). Tính GTBT \(A=cos2\alpha+tan\alpha\)
\(\left\{{}\begin{matrix}0< a< \frac{3\pi}{2}\\sina< 0\end{matrix}\right.\) \(\Rightarrow\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{21}}{5}\Rightarrow tana=\frac{sina}{cosa}=\frac{2\sqrt{21}}{21}\)
\(\Rightarrow A=1-2sin^2a+tana=1-2.\left(-\frac{2}{5}\right)^2+\frac{2\sqrt{21}}{21}=...\)
Cho sin a = 3/5 với π/2 < a < π Tính sin 2a , cos 2a , tan 2a , cot ( a - π/4 ) , sin a/2 , cos a/2 Cảm ơn trc❤
1. cho sinx + cosx = 1/2 . Tính sin3x + cos3x = ?
2. P = \(\frac{1-2sin^2x}{2cot\left(\frac{\pi}{4}+x\right)cos^2\left(\frac{\pi}{4}-x\right)}\)
3. cho tanx + cotx = 2 . Tính tan2x + cot2x
\(sinx+cosx=\frac{1}{2}\Rightarrow\left(sinx+cosx\right)^2=\frac{1}{4}\Rightarrow sin^2x+cos^2x+2sinx.cosx=\frac{1}{4}\)
\(\Rightarrow2sinx.cosx=\frac{1}{4}-1=-\frac{3}{4}\Rightarrow sinx.cosx=-\frac{3}{8}\)
Vậy ta có:
\(sin^3x+cos^3x=\left(sinx+cosx\right)\left[\left(sinx+cosx\right)^2-3sinx.cosx\right]\)
\(=\frac{1}{2}\left(\frac{1}{4}+\frac{9}{8}\right)=\frac{11}{16}\)
Bài 2: Mục đích của bài này là gì bạn? Ko thấy yêu cầu?
Bài 3:
\(tanx+cotx=2\Rightarrow\left(tanx+cotx\right)^2=4\)
\(\Rightarrow tan^2x+2tanx.cotx+cot^2x=4\Rightarrow tan^2x+cot^2x+2=4\)
\(\Rightarrow tan^2x+cot^2x=2\)
Giải phương trình sau :
a) \(1+\sin x-\cos x-\sin2x+2\cos2x=0\)
b) \(\sin x-\dfrac{1}{\sin x}=\sin^2x-\dfrac{1}{\sin^2x}\)
c) \(\cos x\tan3x=\sin5x\)
d) \(2\tan^2x+3\tan x+2cot^2x+3cotx+2=0\)
biết \(sin\alpha=\frac{2}{3}\) tính giá trị biểu thức
\(A=2sin^2\alpha+5cos^2\alpha\)
\(B=tan^2\alpha-2cot^2\alpha\)
\(sina=\frac{2}{3}\Rightarrow cos^2a=1-sin^2a=\frac{5}{9}\)
\(A=2sin^2a+5cos^2a=\frac{8}{9}+\frac{25}{9}=\frac{11}{3}\)
\(B=\frac{sin^2a}{cos^2a}-\frac{2cos^2a}{sin^2a}=\frac{\frac{4}{9}}{\frac{5}{9}}-\frac{\frac{10}{9}}{\frac{4}{9}}=\frac{4}{5}-\frac{5}{2}=-\frac{17}{10}\)
Cho \(\tan\alpha-5\cot\alpha+4=0.\). Tính \(A=\frac{4\sin\alpha+2\cos\alpha}{3\sin\alpha-\cos\alpha}\)
\(tana-5cota+4=0\Rightarrow tana-\dfrac{5}{tana}+4=0\)
\(\Rightarrow tan^2a+4tana-5=0\Rightarrow\left[{}\begin{matrix}tana=1\\tana=-5\end{matrix}\right.\)
\(A=\dfrac{4sina+2cosa}{3sina-cosa}=\dfrac{\dfrac{4sina}{cosa}+\dfrac{2cosa}{cosa}}{\dfrac{3sina}{cosa}-\dfrac{cosa}{cosa}}=\dfrac{4tana+2}{3tana-1}=\left[{}\begin{matrix}3\\\dfrac{9}{8}\end{matrix}\right.\)