Những câu hỏi liên quan
H24
Xem chi tiết
NN
Xem chi tiết
PQ
3 tháng 11 2018 lúc 17:55

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

Bình luận (0)
TP
3 tháng 11 2018 lúc 20:21

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

Bình luận (0)
HT
Xem chi tiết
BB
Xem chi tiết
TG
Xem chi tiết
PH
19 tháng 12 2019 lúc 22:57
https://i.imgur.com/jd3dWdi.jpg
Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TH
25 tháng 6 2020 lúc 17:05

Đặt P = ...

Ta có: \(P=\sum\sqrt{x+\frac{yz}{x+y+z}}=\sum\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x+y+z}}=\frac{\sum\sqrt{\left(x+y\right)\left(x+z\right)}}{\sqrt{2020}}\)

\(\le\frac{\sum\left(x+y+x+z\right)}{2\sqrt{2020}}=\frac{4.\left(x+y+z\right)}{2\sqrt{2020}}=2\sqrt{2020}=4\sqrt{505}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 2020/3

Bình luận (0)
TT
Xem chi tiết
NC
23 tháng 10 2019 lúc 8:51

TXĐ: \(D=\left(-1;1\right)\)

\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)

\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)

Đặt  \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)

=> \(\sqrt{1-x^2}.A=2018x+2020\)

=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)

<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)

pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)

<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)

<=> \(A^2-8076\ge0\)

<=> \(A\ge\sqrt{8076}\)

"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)

Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại  \(x=-\frac{1009}{1010}\)

Bình luận (0)
 Khách vãng lai đã xóa
DN
Xem chi tiết
CT
Xem chi tiết