Những câu hỏi liên quan
HP
Xem chi tiết
VK
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
AL
Xem chi tiết
LD
Xem chi tiết
NN
26 tháng 8 2017 lúc 15:26

Giải casio được không?/

Bình luận (0)
KK
Xem chi tiết
TL
28 tháng 10 2015 lúc 22:41

Kí hiệu đăng thức cần chứng minh là (*)

+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng

+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)

Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)

Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)

=> (*) đúng với n = k+ 1

Vậy.....

 

Bình luận (0)
NH
28 tháng 10 2015 lúc 22:36

1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)

= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)

= (n + 1).n : 2 (đpcm)

Bình luận (0)
LC
28 tháng 10 2015 lúc 22:45

*Xét n=2=>\(1+...+n=1+2=3=\frac{6}{2}=\frac{2.3}{2}=\frac{2.\left(2+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

*Xét n=3=>\(1+...+n=1+2+3=6=\frac{12}{2}=\frac{3.4}{2}=\frac{3.\left(3+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

Giả sử mệnh đề luôn đúng với n=k, ta cần chứng minh mệnh đề luôn đúng với n=k+1

Ta có: \(1+...+n=1+...+k=\frac{k.\left(k+1\right)}{2}\)

=>\(1+...+k+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\left(k+1\right)\)

=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)}{2}+\frac{2.\left(k+1\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{k.\left(k+1\right)+2.\left(k+1\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(k+2\right)}{2}\)

=>\(1+...+\left(k+1\right)=\frac{\left(k+1\right).\left(\left(k+1\right)+1\right)}{2}\)

=>Thoả mãn

=>Phép quy nạp đã được chứng minh

=>ĐPCM

Bình luận (0)
QN
Xem chi tiết
NT
Xem chi tiết