Chứng tỏ rằng:(x+1)^2/4 lớn hơn hoặc bằng x
Cho x, y thuộc R, x+y lớn hơn hoặc bằng 3. Chứng minh rằng:
x + y + 1/2x + 2/y lớn hơn hoặc bằng 9/2
Đề bài sai nếu \(x;y\in R\)
Cho \(y=4;x=-0,000001\) thì vế trái ra 1 số âm có trị tuyệt đối cực to
Đề đúng phải là \(x;y\in R^+\)
Làm trong trường hợp đề đã chỉnh lại:
\(VT=x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)
\(VT\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{1}{2}.3=\frac{9}{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Cho a,b,cần là các số thực dương và a+b+c lớn hơn hoặc bằng 3. Chứng minh rằng
1/(1+a)+1/(1+biết)+1/(1+c)lớn hơn hoặc bằng 3/2
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{3+a+b+c+}=\frac{9}{6}=\frac{3}{2}\)
Cái đó chỉ đúng khi 1/1+a=1/1+b=1/1+c thoi
Cho đa thức : Q(x) = ax^2 + bx + c
a) Biết 5a + b+ 2c = 0. Chứng tỏ rằng Q(2).Q(-1) bé hơn hoặc = 0
b) Biết Q(x) = 0 với mọi x . Chứng tỏ rằng a = b = c= 0
a/
\(Q\left(2\right).Q\left(-1\right)=\left(4a+2b+c\right)\left(a-b+c\right)=\left(5a+b+2c-a+b-c\right)\left(a-b+c\right)\)
\(=\left(-a+b-c\right)\left(a-b+c\right)=-\left(a-b+c\right)^2\le0\)
b/
Q(x) = 0 với mọi x, suy ra các điều sau:
\(\Rightarrow Q\left(0\right)=c=0\); \(Q\left(1\right)=a+b+c=a+b=0\); \(Q\left(-1\right)=a-b+c=a-b=0\)
\(\Rightarrow\left(a+b\right)+\left(a-b\right)=0\text{ và }\left(a+b\right)-\left(a-b\right)=0\)\(\Leftrightarrow2a=0\text{ và }2b=0\Leftrightarrow a=b=0\)
Vậy \(a=b=c=0\)
Cho 3 số nguyên tố lớn hơn 3.Hãy chứng tỏ rằng luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 12.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Cho 3 số a;b;c sao cho 0 lớn hơn hoặc bằng a lớn hơn hoặc bằng b lớn hơn hoặc bằng c lớn hơn hoặc bằng 1
Chứng minh : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}\)lớn hơn hoặc bằng 2
Bài toán sai.
Ví dụ: a \(\ge\) b \(\ge\) c 1
Thì có a=1, b=1, c=1
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{b+1}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}<2\)
bạn giải chi tiết ra cho mk đc ko?
cho 3 số dương a,b,c có tổng bằng 1. Chứng minh rằng (1/a)+(1/b)+(1/c) lớn hơn hoặc bằng 9
Với a,b,c > 0 áp dụng BĐT Cauchy, ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
Cmtt: \(\dfrac{c}{a}+\dfrac{a}{c}\ge2\) và \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\)
Theo đề bài, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)(do a + b + c = 1)
\(=1+\dfrac{a}{b}+\dfrac{a}{c}+1+\dfrac{b}{a}+\dfrac{b}{c}+1+\dfrac{c}{a}+\dfrac{c}{b}\)
\(=3+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{a}+\dfrac{b}{c}+\dfrac{c}{b}\)\(\ge3+2+2+2=9\)
Cho 3 số a;b;c sao cho 0 lớn hơn hoặc bằng a lớn hơn hoặc bằng b lớn hơn hoặc bằng c lớn hơn hoặc bằng 1
Chứng minh : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\) nhỏ hơn hoặc bằng 2
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
AI BIẾT LÀM BÀI NÀY CHỈ EM VỚI Ạ!! EM CẢM ƠN ❤
Chứng tỏ rằng:
a) Số có dạng aaa bao giờ cũng chia hết cho 37.
b) Số có dạng ab - ba ( a lớn hơn hoặc bằng b ) bao giờ cũng chia hết cho 9.
c) Với mọi số tự nhiên n thì tích ( n + 3 )( n + 6 ) luôn chia hết cho 2.
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
TÌM X BIẾT:
a) 32 bé hơn 2^x bé hơn 128
b) 2.16 lớn hơn hoặc bằng 2^x lớn hơn 4
c) 9.27 bé hơn hoặc bằng 3^x bé hơn hoặc bằng 243
d) x^20 - x = 0