Những câu hỏi liên quan
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 22:23

\(\left(4-\sqrt{7}\right)^2=4^2-2\cdot4\cdot\sqrt{7}+7\)

\(=16-8\sqrt{7}+7=23-8\sqrt{7}\)

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot2+4}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\left|\sqrt{5}-2\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\)

\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}\)

\(=\dfrac{\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}+1}\cdot\dfrac{\sqrt{3}+1}{\sqrt{2}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{3-1}{2-1}=2\)

\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{1}{2}\sqrt{6}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{1}{2}-2=-\dfrac{3}{2}=-1,5\)

Bình luận (0)
HL
Xem chi tiết
NT
17 tháng 12 2023 lúc 22:24

loading...

loading...

Bình luận (0)
MV
Xem chi tiết
H24
20 tháng 8 2021 lúc 11:48

`e)(3/2sqrt6+2sqrt{2/3}-4sqrt{3/2})(3/2sqrt6+2sqrt{2/3}+4sqrt{3/2})`

`=(3/2sqrt6+2sqrt{2/3})^2-(4\sqrt{3/2})^2`

`=((3sqrt6)/2+(2sqrt2)/3)^2-16*3/2`

`=((9sqrt6)/6+(4sqrt6)/6)^2-24`

`=((13sqrt6)/6)^2-24`

`=13^2/6-24`

`=25/6`

Bình luận (0)
ND
Xem chi tiết
AD
Xem chi tiết
YT
Xem chi tiết
MV
Xem chi tiết
NT
19 tháng 8 2021 lúc 21:01

a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)

\(=\dfrac{-3}{2}\)

Bình luận (0)
MA
Xem chi tiết
PT
19 tháng 7 2020 lúc 20:23

a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))

=2(\(\sqrt{5}+5-\sqrt{5}-1\))

=2.4=8=VP
=> đpcm

b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)

=\(2\sqrt{2}-2\)

=2\(\left(\sqrt{2}-1\right)\)

=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)

vậy VT=VP =>đpcm

Bình luận (0)
LL
Xem chi tiết
NL
7 tháng 7 2021 lúc 19:10

\(=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{6^2}}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5+2\sqrt{3}\sqrt{5}+3}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

Bình luận (0)
RK
7 tháng 7 2021 lúc 19:10

 \(VT\Leftrightarrow\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2=VP\left(dpcm\right)\)

Bình luận (0)
NL
7 tháng 7 2021 lúc 19:10

\(\left(\dfrac{\sqrt{30}-\sqrt{20}}{\sqrt{3}-\sqrt{2}}-\dfrac{6}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\sqrt{6}\right)\left(4+\sqrt{15}\right)\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)\)

\(=5-3=2\)

Bình luận (0)