Những câu hỏi liên quan
KG
Xem chi tiết
XO
24 tháng 7 2023 lúc 16:56

\(P=n^3+n+2\)

\(=\left(n^3+1\right)+\left(n+1\right)\)

\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)

\(=\left(n+1\right).\left(n^2-n+2\right)\)

Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)

nên P là hợp số 

Bình luận (0)
D2
Xem chi tiết
MN
29 tháng 8 2021 lúc 22:14

Với n = 1 thì \(x^1\ge2.x^0=0\)

Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).

Ta phải chứng minh :

\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)

\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)

Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
H24
Xem chi tiết
H24
24 tháng 3 2020 lúc 20:56

Nếu có bạn nào trả lời thì ngoài t.i.c.k đúng tớ còn pải làm thế nào để 'chọn câu trả lời này'??

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 3 2020 lúc 20:58

Gọi d là ƯCLN (2n+1;2n+3) (d thuộc N*)

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d

Mà d thuộc N* => d={1;2}

Ta có 2n+1 không chia hết cho 2 và 2n+3 không chia hết cho 2

=> d=1

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NC
24 tháng 3 2020 lúc 21:00

Với mọi số tự nhiên n 

Đặt: ( 2n + 1; 2n + 3 ) = d ( với d là số tự nhiên )

=> \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\Rightarrow2⋮d\)

=> \(d\inƯ\left(2\right)=\left\{1;2\right\}\)

Mặt khác : 2n + 1 là số lẻ nên \(2n+1⋮̸2\)=> d = 1

=>  2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau với mọi n 

Vậy với mọi số tự nhiên  n thì \(A=\frac{2n+1}{2n+3}\) là phân số tối giản.

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
NM
17 tháng 9 2019 lúc 19:17

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

Bình luận (0)
TP
Xem chi tiết
ZZ
2 tháng 8 2020 lúc 15:38

Tham khảo câu trả lời tại đây bạn nhé !

https://olm.vn/hoi-dap/detail/224113518607.html

Câu hỏi của An Van - Toán lớp 10 - Học toán với OnlineMath

Chúc bạn học tốt ^_^

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 8 2020 lúc 16:18

Bài làm:

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n\)

\(=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1)(n+2) là tích 3 STN liên tiếp 

=> n(n+1)(n+2) chia hết cho 3, mà 3n chia hết cho 3

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
TB
Xem chi tiết
2T
4 tháng 9 2019 lúc 20:32

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
Bình luận (0)
LM
4 tháng 9 2019 lúc 20:36

a,25^n.24

mà 25^n :5

Bình luận (0)
 .
4 tháng 9 2019 lúc 20:37

a) \(25^{n+1}-25^n=25^n.\left(25-1\right)\)

\(=25^n.24=25^n.4.6\)

\(=\left(25^n.4\right).6⋮100\) ( do \(25^n.4⋮100\forall n\inℕ^∗\) )

b) \(n^2.\left(n-1\right)-2n\left(n-1\right)\)

\(=\left(n-1\right).\left(n^2-2n\right)\)

\(=\left(n-1\right).n.\left(n-2\right)\)

Ba số trên là ba số liên tiếp

\(\Rightarrow\hept{\begin{cases}\left(n-1\right).n.\left(n-2\right)⋮2\\\left(n-1\right).n.\left(n-2\right)⋮3\end{cases}}\)

\(\Rightarrow\left(n-1\right).n.\left(n-2\right)⋮6\)

hay : \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right)\)

Đến đây tương tự câu b) thì ta có đpcm.

Bình luận (0)
H24
Xem chi tiết
H24
9 tháng 2 2020 lúc 9:35

2x+3y chia hết cho 13 

Mà (13; 7) = 1 => 7(2x+3y) chia hết cho 13

=> 14x + 21y chia hết cho 13

Lại có 13x + 13y chia hết cho 13

=> (14x+21y) - (13x+13y) chia hết cho 13

=> x+8y chia hết cho 13 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TT
9 tháng 2 2020 lúc 9:36

Ta thấy : \(2x+16y=\left(2x+3y\right)+13y⋮13\)

\(\Rightarrow2x+16y⋮13\Rightarrow2\left(x+8y\right)⋮13\)

Mà  \(\left(13,2\right)=1\)

\(\Rightarrow x+8y⋮13\forall x,y\inℕ\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
9 tháng 2 2020 lúc 9:55

Mấy bạn ơi chứng minh ngược lại nữa, chứ cái đó tớ biết rồi!

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết