Tính :\(\sqrt{29.4\sqrt{15}}\)
Biết M=\(\sqrt{15-2\sqrt{15-2\sqrt{15-2\sqrt{15...}}}}\), tính M
Lời giải:
Nếu .... là vô hạn thì:
$M=\sqrt{15-2M}$
$\Rightarrow M^2=15-2M$
$\Leftrightarrow M^2+2M-15=0$
$\Leftrightarrow (M-3)(M+5)=0$
$\Leftrightarrow M=3$ (do $M>0$)
Tính: C=\(\sqrt{15+\sqrt{15+\sqrt{15+\sqrt{15+...}}}}\)
C=√15+√15+....
C^2=15+√15+√15....=15+C.Ta có phương trình :
C^2-C-15=0.Sau đó giải ra C=(1+√61)/2(do C>0)
Tính
a) \(\sqrt{6-\sqrt{11}}\cdot\sqrt{6+\sqrt{11}}\)
b) \(\sqrt{8+\sqrt{15}}\cdot\sqrt{8-\sqrt{15}}\)
a) \(\sqrt{6-\sqrt{11}}\cdot\sqrt{6+\sqrt{11}}\)
\(=\sqrt{\left(6-\sqrt{11}\right)\left(6+\sqrt{11}\right)}\)
\(=\sqrt{6^2-\left(\sqrt{11}\right)^2}\)
\(=\sqrt{36-11}\)
\(=\sqrt{25}\)
\(=\sqrt{5^2}\)
\(=5\)
b) \(\sqrt{8+\sqrt{15}}\cdot\sqrt{8-\sqrt{15}}\)
\(=\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}\)
\(=\sqrt{8^2-\left(\sqrt{15}\right)^2}\)
\(=\sqrt{64-15}\)
\(=\sqrt{49}\)
\(=\sqrt{7^2}\)
\(=7\)
a: \(=\sqrt{6^2-11}=\sqrt{25}=5\)
b: \(=\sqrt{8^2-15}=\sqrt{49}=7\)
\(B=\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)
Tính B
\(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}=\sqrt{\left(\sqrt{\dfrac{5}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{3}{2}}\right)^2}=\sqrt{\dfrac{5}{2}}-\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{5}{2}}-\sqrt{\dfrac{3}{2}}=-2\sqrt{\dfrac{3}{2}}=-\sqrt{6}\)
\(B=\sqrt{\dfrac{8-2\sqrt{15}}{2}}-\sqrt{\dfrac{8+2\sqrt{15}}{2}}\\ B=\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}\\ B=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}\\ B=\dfrac{-2\sqrt{3}}{\sqrt{2}}=\dfrac{-2\sqrt{6}}{2}=-\sqrt{6}\)
Tính : \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
$(4+\sqrt{15})(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$
$=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$
$=(\sqrt{10}-\sqrt6)\sqrt{4+\sqrt{15}}\sqrt{16-15}$
$=\sqrt2(\sqrt5-\sqrt3)\sqrt{4+\sqrt{15}}$
$=(\sqrt5-\sqrt3)\sqrt{8+2\sqrt{15}}$
$=(\sqrt5-\sqrt3)\sqrt{5+2\sqrt{5}.\sqrt3+3}$
$=(\sqrt5-\sqrt3)\sqrt{(\sqrt5+\sqrt3)^2}$
$=(\sqrt5-\sqrt3)(\sqrt5+\sqrt3)=5-3=2$
tính giá trị các biểu thức:
B=(4+\(\sqrt{15}\))\(\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(B=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\\ B=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2\\ B=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\\ B=2\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{16-15}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}.\sqrt{5}+\left(\sqrt{5}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)=\left|\sqrt{5}+\sqrt{3}\right|\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
Ta có: \(B=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
=2
tính giá trị biểu thức
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{4+\sqrt{15}}\left(\sqrt{4+\sqrt{15}}\cdot\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{4+\sqrt{15}}\left(16-15\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{2\left(4+\sqrt{15}\right)}\left(\sqrt{5}-\sqrt{3}\right)\\ =\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
Tính:
\(\frac{2\sqrt{3}-1}{\sqrt{15}}-\frac{2-\sqrt{5}}{\sqrt{3}}-\frac{4\sqrt{15}-10\sqrt{3}}{15}\)
\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
tính (rút gọn )
(\(\sqrt{8-2\sqrt{15}}\)+ \(\sqrt{8+2\sqrt{15}}\)- \(2\sqrt{6-2\sqrt{5}}\))/2
= (\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)+ \(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)- \(2\sqrt{\left(\sqrt{5}-1\right)^2}\))/2
= ( \(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(-2\sqrt{5}+2\)) / 2
= 2/2 = 1
bài của TuanMinhAms sai nha
\(A=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)=2\)
\(\Rightarrow\)\(A=\sqrt{2}\)