Những câu hỏi liên quan
UB
Xem chi tiết
BJ
20 tháng 7 2021 lúc 22:14

undefined

Bình luận (1)
NL
Xem chi tiết
PT
3 tháng 7 2018 lúc 22:03

Đề?

Bình luận (1)
Xem chi tiết

 nếu ta dùng cách rút gọn biểu thức thì ta có kết quả 

A=(8a-8)x2+(2a-2)x-15a+15

còn nếu sử dụng cách Phân tích thành nhân tử  thì ta  sẽ  có kết quả là 

A=(a-1)(2x+3)(4x-5)

(tự xét )

B  = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)

= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

hc tốt

Bình luận (0)

tớ chỉ biết làm phần B thôi 

 B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

phần A tương tự 

Bình luận (0)

Cảm ơn 2 cậu nhìu nha!!

Bình luận (0)
BH
Xem chi tiết
ND
Xem chi tiết
ND
15 tháng 8 2021 lúc 14:43

Giúp mình với ạ,cảm ơn mọi người

Bình luận (0)
NT
15 tháng 8 2021 lúc 14:44

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)

Bình luận (0)
NH
Xem chi tiết
NT
24 tháng 5 2022 lúc 10:18

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7

Bình luận (0)
DS
Xem chi tiết
NH
Xem chi tiết
NT
24 tháng 5 2022 lúc 10:15

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7

Bình luận (0)
DT
Xem chi tiết