Những câu hỏi liên quan
SK
Xem chi tiết
BV
5 tháng 6 2017 lúc 15:08

Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).

Bình luận (1)
SK
Xem chi tiết
BV
5 tháng 6 2017 lúc 15:21

a)

Bình luận (1)
BV
5 tháng 6 2017 lúc 15:24

Bình luận (1)
VG
Xem chi tiết
TH
17 tháng 1 2021 lúc 23:11

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

Bình luận (0)
H24
Xem chi tiết
DB
Xem chi tiết
NL
20 tháng 9 2019 lúc 18:56

Do (P) đi qua \(M\left(4;3\right)\Rightarrow16a+4b+c=3\)

Do (P) cắt Ox tại \(N\left(3;0\right)\Rightarrow9a+3b+c=0\)

\(\Rightarrow7a+b=3\Rightarrow b=3-7a\)

\(9a+3\left(3-7a\right)+c=0\Rightarrow c=12a-9\)

Phương trình hoành độ giao điểm (P) và Ox: \(ax^2+bx+c=0\)

\(\Delta=b^2-4ac=\left(3-7a\right)^2-4a\left(12a-9\right)=\left(a-3\right)^2\)

Do \(\left\{{}\begin{matrix}x_P< x_I< x_N< x_M\\y_N< y_M\end{matrix}\right.\) \(\Rightarrow\) hàm \(y=ax^2+bx+c\) đồng biến trên \(\left(-\frac{b}{2a};+\infty\right)\)

\(\Rightarrow a>0\)

\(\Rightarrow x_N=\frac{-b+\left|a-3\right|}{2a}=\frac{7a-3+\left|a-3\right|}{2a}=3\)

\(\Rightarrow\left|a-3\right|=3-a\Rightarrow0< a< 3\)

\(\Rightarrow S_{INP}=\frac{1}{2}\left(x_N-x_P\right).\left|\frac{-\Delta}{4a}\right|=\frac{1}{2}\frac{\sqrt{\Delta}}{a}.\frac{\Delta}{4a}=1\)

\(\Leftrightarrow\left(3-a\right)\left(a-3\right)^2=8a^2\)

\(\Leftrightarrow a^3-a^2+27a-27=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+27\right)=0\Rightarrow a=1\)

\(\Rightarrow b=-4\) ; \(c=3\)

\(\left(P\right):y=x^2-4x+3\)

Bình luận (2)
NA
Xem chi tiết
NH
17 tháng 2 2017 lúc 22:31

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Bình luận (0)
NH
17 tháng 2 2017 lúc 22:33

Nhớ k đúng cho mik

Bình luận (0)
MA
Xem chi tiết
NL
12 tháng 8 2021 lúc 22:12

Đề bài thiếu, không thể xác định chính xác (P) khi chỉ biết đỉnh

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 11:33

a) Thay tọa độ điểm \(M\left( {1;12} \right)\) và \(N\left( { - 3;4} \right)\) ta được:

\(\begin{array}{l}\left\{ \begin{array}{l}a{.1^2} + b.1 + 4 = 12\\a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4 = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a + b = 8\\9a - 3b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\end{array}\)

Vậy parabol là \(y = 2{x^2} + 6x + 4\)

b) Hoành độ đỉnh của parabol là \(x_I = \frac{{ - b}}{{2a}}\)

Suy ra \(x_I = \frac{{ - b}}{{2a}} =  - 3 \Leftrightarrow b = 6a\)     (1)

Thay tọa độ điểm I vào ta được:

\(\begin{array}{l} - 5 = a.{\left( { - 3} \right)^2} + b.\left( { - 3} \right) + 4\\ \Leftrightarrow 9a - 3b =  - 9\\ \Leftrightarrow 3a - b =  - 3\left( 2 \right)\end{array}\)

Từ (1) và (2) ta được hệ

\(\begin{array}{l}\left\{ \begin{array}{l}b = 6a\\3a - b =  - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\3a - 6a =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 6a\\a = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 6\\a = 1\end{array} \right.\end{array}\)

Vậy parabol là \(y = {x^2} + 6x + 4\).

Bình luận (0)
ND
Xem chi tiết
AH
17 tháng 12 2021 lúc 23:04

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

Bình luận (1)
AH
17 tháng 12 2021 lúc 23:07

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

Bình luận (0)