§3. Hàm số bậc hai

SK

Xác định a, b, c biết parabol \(y=ax^2+bx+c\) đi qua điểm \(A\left(8;0\right)\) và có đỉnh là \(I\left(6;-12\right)\)

BV
5 tháng 6 2017 lúc 15:08

Hàm số đi qua \(A\left(8;0\right)\) nên: \(a.8^2+8b+c=0\)\(\Leftrightarrow64a+8b+c=0\).
Hàm số có đỉnh là: \(I\left(6;-12\right)\) nên: \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=6\\6^2.a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}12a+b=0\\36a+6b+c=-12\end{matrix}\right.\).
Vậy ta có hệ: \(\left\{{}\begin{matrix}64a+8b+c=0\\-b=12a\\36a+6b+c=-12\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-36\\c=96\end{matrix}\right.\).
Vậy : \(y=-3x^2-36x+96\).

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
DB
Xem chi tiết
21
Xem chi tiết
SK
Xem chi tiết
PA
Xem chi tiết
ND
Xem chi tiết
DT
Xem chi tiết
2N
Xem chi tiết
H24
Xem chi tiết