Những câu hỏi liên quan
LN
Xem chi tiết
H24
25 tháng 12 2016 lúc 14:51

\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)

\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)

Bình luận (0)
LN
25 tháng 12 2016 lúc 15:30

?????????

Bình luận (0)
RY
Xem chi tiết
 .
5 tháng 9 2019 lúc 17:24

\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{\left(x^2+2xy+y^2\right)+xy+y^2}{\left(x^3+x^2y+xy^2+y^3\right)+x^2y-2xy^2-3y^3}\)

\(=\frac{\left(x+y\right)^2+y\left(x+y\right)}{\left(x+y\right)^3+y.\left(x^2-2xy-2y^2\right)}\)

Bình luận (0)
NN
Xem chi tiết
LF
25 tháng 12 2016 lúc 13:45

Ta phân tích mẫu:

\(x^3+2x^2y-xy^2-2y^3\)

\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)

\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)

\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)

Thay vào ta có:

\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)

Vậy ta có điều phải chứng minh

Bình luận (1)
H24
Xem chi tiết
LG
15 tháng 9 2019 lúc 8:39

\(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+2xy+xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+2y\right)+y\left(x+2y\right)}{\left(x+2y\right)\left(x^2-y^2\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\frac{1}{x-y}\)

Bình luận (0)
ST
Xem chi tiết
NQ
12 tháng 11 2017 lúc 20:34

viết sai đề hết rồi

Bình luận (1)
H24
26 tháng 8 2021 lúc 21:42

Phân tích đa thức sau thành nhân tử

 

Bình luận (0)
HM
Xem chi tiết
NH
Xem chi tiết
MT
26 tháng 9 2015 lúc 10:43

\(VP=\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)

\(=\frac{x.\left(x+y\right)+2y.\left(x+y\right)}{x.\left(x^2-y^2\right)+2y.\left(x^2-y^2\right)}=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}=VT\left(\text{điều phải chứng minh}\right)\)

Bình luận (0)
TC
Xem chi tiết
NT
17 tháng 8 2021 lúc 13:10

\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\dfrac{\left(x+y\right)\left(x+2y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)

\(=\dfrac{x+y}{x^2-y^2}\)

\(=\dfrac{1}{x-y}\)

Bình luận (0)
BC
Xem chi tiết
BC
13 tháng 3 2018 lúc 20:36

trả lời hộ với mai thi rồi

Bình luận (0)