Những câu hỏi liên quan
GG
Xem chi tiết
H24
Xem chi tiết
TC
23 tháng 4 2022 lúc 12:54

undefinedundefined

Bình luận (0)
ND
Xem chi tiết
LP
4 tháng 10 2023 lúc 16:42

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

Bình luận (0)
MH
Xem chi tiết
NM
22 tháng 10 2021 lúc 20:33

Bài 1:

\(2x^4+ax^2+bx+c⋮x-2\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow32+4a+2b+c=0\Leftrightarrow4a+2b+c=-32\left(1\right)\)

\(2x^4+ax^2+bx+c:\left(x^2-1\right)R2x\\ \Leftrightarrow2x^4+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\cdot b\left(x\right)+2x\)

Thay \(x=1\Leftrightarrow2+a+b+c=2\Leftrightarrow a+b+c=0\left(2\right)\)

Thay \(x=-1\Leftrightarrow2+a-b+c=-2\Leftrightarrow a-b+c=-4\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=-32\\a+b+c=0\\a-b+c=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{34}{3}\\b=2\\c=\dfrac{28}{3}\end{matrix}\right.\)

 

Bình luận (0)
NM
22 tháng 10 2021 lúc 20:59

Bài 2:

Do \(f\left(x\right):x^2+x-12\) được thương bậc 2 nên dư bậc 1

Gọi đa thức dư là \(ax+b\)

Vì \(f\left(x\right):x^2+x-12\) được thương là \(x^2+3\) và còn dư nên

\(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)+ax+b\\ \Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x-3\right)\left(x^2+3\right)+ax+b\)

Thay \(x=3\Leftrightarrow f\left(3\right)=3a+b\)

Mà \(f\left(x\right):\left(x-3\right)R2\Leftrightarrow f\left(3\right)=2\Leftrightarrow3a+b=2\left(1\right)\)

Thay \(x=-4\Leftrightarrow f\left(-4\right)=-4a+b\)

Mà \(f\left(x\right):\left(x+4\right)R9\Leftrightarrow f\left(-4\right)=9\Leftrightarrow-4a+b=-9\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\-4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

Do đó \(f\left(x\right)=\left(x^2+x-12\right)\left(x^2+3\right)-x+5\)

\(\Leftrightarrow f\left(x\right)=x^4+3x^2+x^3+3x-12x^2-36-x+5\\ \Leftrightarrow f\left(x\right)=x^4+x^3-9x^2+2x-31\)

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 5 2019 lúc 4:13

Bình luận (0)
LB
Xem chi tiết
XO
27 tháng 1 2022 lúc 19:27

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

Bình luận (0)
XO
27 tháng 1 2022 lúc 19:37

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

Bình luận (0)
HH
Xem chi tiết
ML
4 tháng 7 2015 lúc 10:09

\(f\left(x\right)=ax^3+bx^2+c\)

f(x) chia hết cho x - 2 \(\Rightarrow f\left(x\right)=\left(x-2\right).g\left(x\right)\Rightarrow f\left(2\right)=a.2^3+b.2^2+c=\left(2-2\right).g\left(2\right)=0\)

\(\Rightarrow8a+4b+c=0\text{ (1)}\)

f(x) chia x2 - 1 dư x + 5 \(\Rightarrow f\left(x\right)=\left(x^2-1\right).h\left(x\right)+x+5\)

\(f\left(1\right)=a+b+c=\left(1^2-1\right).h\left(1\right)+1+5=6\text{ }\)

\(\Rightarrow a+b+c=6\text{ (2)}\)

\(f\left(-1\right)=-a+b+c=\left[\left(-1\right)^2-1\right].h\left(-1\right)-1+5=4\)

\(\Rightarrow-a+b+c=4\text{ (3)}\)

Từ (1) (2) (3) suy ra \(a=1;b=-\frac{13}{3};c=\frac{28}{3}\)

Vậy \(f\left(x\right)=x^3-\frac{13}{3}x^2+\frac{28}{3}\)

Bình luận (0)
HH
4 tháng 7 2015 lúc 15:19

tại sao b= -13/3 và c = 28/3 . bạn làm kiểu j chỉ cho mink với

 

Bình luận (0)
H24
Xem chi tiết
NT
3 tháng 12 2023 lúc 9:18

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+4x^3-8x^2+\left(a+8\right)x^2-x\left(2a+16\right)+\left(2a+16+b\right)x-2\left(2a+16+b\right)+4a+32+2b+c\)

\(=\left(x-2\right)\left(2x^3+4x^2+x\left(a+8\right)+2a+16+b\right)+4a+2b+32+c\)

=>\(\dfrac{f\left(x\right)}{x-2}=2x^3+4x^2+x\left(a+8\right)+2a+16+b+\dfrac{4a+2b+32+c}{x-2}\)

f(x) chia hết cho x-2 nên \(4a+2b+32+c=0\)(1)

\(f\left(x\right)=2x^4+ax^2+bx+c\)

\(=2x^4-4x^3+6x^2+4x^3-16x^2+12x+\left(a+10\right)x^2-4x\left(a+10\right)+3a+30+x\left(4a+28+b\right)+c-3a-30\)

\(=\left(x^2-4x+3\right)\left(2x^2+4x+a+10\right)\)+x(4a+28+b)+c-3a-30

f(x) chia cho x2-4x+3 dư -x+2 nên ta có: 

\(\left\{{}\begin{matrix}4a+28+b=-1\\c-3a-30=2\end{matrix}\right.\)(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+2b+32+c=0\\4a+b+28=-1\\c-3a=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4a+2b+c=-32\\4a+b=-29\\-3a+c=32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c=-3\\-3a+c=32\\4a+b=-29\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+3a=-35\\4a+b=-29\\b+c=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-a=-6\\4a+b=-29\\b+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=-29-4a=-29-4\cdot6=-53\\c=-3-b=-3-\left(-53\right)=50\end{matrix}\right.\)

Bình luận (0)
DL
Xem chi tiết