Tìm tất cả các số tự nhiên n để (n^2+1)(5n^2+9) là 1 số chính phương
Tìm tất cả các số tự nhiên n để (n^2+1)(5n^2+9) là 1 số chính phương
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Tìm tất cả các số tự nhiên n để n + 1 và n + 13 đều là các số chính phương.
-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)
\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)
\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)
-Vì \(b-a< b+a\)
\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)
-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Tìm tất cả các số tự nhiên n để A = n^2 + 4n + 11 là số chính phương.
Giả sử \(A=n^2+4n+11\) là số chính phương
đặt \(n^2+4n+11=k^2>0\)
\(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)
Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)
Ta có bảng:
n-k+2 | -1 | -7 |
n+k+2 | 7 | 1 |
n | 1 | -5(loại) |
k | 4 | 4 |
Vậy n=1
Tìm tất cả các số tự nhiên n để n^2+2004 là số chính phương
tìm tất cả các số tự nhiên n để G=n^2-14n-256 là số chính phương
Đặt \(n^2-14n-256=a^2\)
\(\Leftrightarrow\left(n^2-14n+49\right)-a^2=305\)
\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)
\(\Leftrightarrow\left(n-7+a\right)\left(n-7-a\right)=305=5\cdot61\)
Đến đây làm nốt đi.
Đặt \(G=n^2-14n-256=a^2\)(là số chính phương)
\(\Leftrightarrow n^2-14n+49-305=a^2\)
\(\Leftrightarrow\left(n-7\right)^2-305=a^2\)
\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)
\(\Leftrightarrow\left(n+a-7\right)\left(n-a-7\right)=305=5.61\)
Mà \(n+a-7\ge n-a-7\)nên \(\hept{\begin{cases}n+a-7=61\\n-a-7=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n+a=68\\n-a=12\end{cases}}\Leftrightarrow n=\frac{68+12}{2}=40\)
Vậy n = 40 thì \(G=n^2-14n-256\)là số chính phương
Thiếu trường hợp:
305 = 5. 61 = 305 . 1
n là số tự nhiên nhưng a có thể là số âm em nhé! Vì thế không thể kết luận \(n+a-7\ge n-a-7.\)
Tìm tất cả các số tự nhiên n sao cho 1! + 2! + 3! + 4! +.....+ n! là số chính phương.
Tìm tất cả các số tự nhiên n sao cho \(2^n+n^2+1\) là số chính phương
Tìm tất cả các số tự nhiên n để các số: n-1, n5 + n4 + n3 + 13n2 + 13n + 14 đều là số chính phương
n^2+n+6=k^2
4n^2+4n+24=4k^2
(2n+1)^2-(2k)^2=-23
(2n+1-2k)(2n+1+2k)=-23
Đến đây bạn tự giải tiếp nhé