Những câu hỏi liên quan
NN
Xem chi tiết
NT
31 tháng 8 2022 lúc 22:21

a: \(=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}\cdot\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=\left(-3\sqrt{10}+10\right)\left(\dfrac{3}{10}\sqrt{10}+10\right)\)

\(=-9-30\sqrt{10}+3\sqrt{10}+100=91-27\sqrt{10}\)

b: \(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}\cdot\left(\dfrac{5}{2}\sqrt{2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\left(5\sqrt{3}+12\sqrt{6}\right)\)

\(=-60-144\sqrt{2}+30\sqrt{2}+144\)

\(=84-114\sqrt{2}\)

Bình luận (0)
NT
Xem chi tiết
NA
26 tháng 10 2017 lúc 14:37

Biến đổi vế trái

\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)

\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)

\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)

\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)

Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh

Bình luận (0)
WR
Xem chi tiết
HN
9 tháng 10 2016 lúc 15:54
 

\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right)\sqrt{5}-\left(3\sqrt{\frac{1}{10}}+10\right)=\left(2\sqrt{2}-5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\frac{3\sqrt{10}}{10}-10\)

\(=-3\sqrt{10}+10-\frac{3\sqrt{10}}{10}-10=-3\sqrt{10}-\frac{3\sqrt{10}}{10}=-3\sqrt{10}\left(1+\frac{1}{10}\right)=\frac{-33\sqrt{10}}{10}=-3,3\sqrt{10}\)

 

 

Bình luận (0)
WR
Xem chi tiết
HN
9 tháng 10 2016 lúc 11:03

Đề bài sai nhé.

Bình luận (0)
TT
Xem chi tiết
TP
10 tháng 9 2019 lúc 17:25

\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{2}\cdot\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(3+\sqrt{5}\right)\cdot\left(\sqrt{5}-1\right)^2\)

\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(=2\cdot\left(3+\sqrt{5}\right)\cdot\left(3-\sqrt{5}\right)\)

\(=2\cdot\left(9-5\right)\)

\(=2-4=8\)

Bình luận (0)
TT
10 tháng 9 2019 lúc 14:31

@buithianhtho giúp mk vs

Bình luận (2)
BT
10 tháng 9 2019 lúc 15:39

tthTrần Thanh PhươngNguyễn Huy Thắng

Giúp bạn ấy nha

Bình luận (0)
NM
Xem chi tiết
KS
25 tháng 9 2019 lúc 11:13

\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

\(\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right).\sqrt{2}.\sqrt{3-\sqrt{5}}\)

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right).\sqrt{\left(\sqrt{5-1}\right)^2}\)

\(\left(3+\sqrt{5}\right).\left(\sqrt{5}-1\right)^2\)

\(\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(2.\left(3+\sqrt{5}\right).\left(3-\sqrt{5}\right)\)

\(2.\left(9-5\right)\)

\(2.4=8\)

Chúc bạn học tốt !!!

Bình luận (0)
OC
25 tháng 9 2019 lúc 11:29

đs

8

hok tốt

Bình luận (0)
MA
Xem chi tiết
PT
19 tháng 7 2020 lúc 20:23

a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)

=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))

=2(\(\sqrt{5}+5-\sqrt{5}-1\))

=2.4=8=VP
=> đpcm

b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)

=\(2\sqrt{2}-2\)

=2\(\left(\sqrt{2}-1\right)\)

=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)

vậy VT=VP =>đpcm

Bình luận (0)
NY
Xem chi tiết
NT
5 tháng 10 2021 lúc 21:04

b: Ta có: \(\left(\sqrt{7-3\sqrt{5}}\right)\cdot\left(7+3\sqrt{5}\right)\cdot\left(3\sqrt{2}+\sqrt{10}\right)\)

\(=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\left(7+3\sqrt{5}\right)\)

\(=4\left(7+3\sqrt{5}\right)\)

\(=28+12\sqrt{5}\)

Bình luận (0)
AH
5 tháng 10 2021 lúc 21:21

Lời giải:

a. 

$A=\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}$
$\sqrt{2}A=\sqrt{16+2\sqrt{55}}-\sqrt{16-2\sqrt{55}}-\sqrt{250}$

$=\sqrt{(\sqrt{11}+\sqrt{5})^2}-\sqrt{(\sqrt{11}-\sqrt{5})^2}-5\sqrt{10}$

$=|\sqrt{11}+\sqrt{5}|-|\sqrt{11}-\sqrt{5}|-5\sqrt{10}$

$=2\sqrt{5}-5\sqrt{10}$

$\Rightarrow A=\sqrt{10}-5\sqrt{5}$

b.

$B=\sqrt{7-3\sqrt{5}}.(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$B\sqrt{2}=\sqrt{14-6\sqrt{5}}(7+3\sqrt{5})(3\sqrt{2}+\sqrt{10})$

$=\sqrt{(3-\sqrt{5})^2}(7+3\sqrt{5}).\sqrt{2}(3+\sqrt{5})$

$=(3-\sqrt{5})(7\sqrt{2}+3\sqrt{10})(3+\sqrt{5})$

$=(3^2-5)(7\sqrt{2}+3\sqrt{10})$

$=4(7\sqrt{2}+3\sqrt{10})=28\sqrt{2}+12\sqrt{10}$

$\Rightarrow B=28+12\sqrt{5}$

c.

$C=\sqrt{2}(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{6+\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{12+2\sqrt{35}}$

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})\sqrt{(\sqrt{7}+\sqrt{5})^2}

$=(\sqrt{7}-\sqrt{5})(6-\sqrt{35})(\sqrt{7}+\sqrt{5})$

$=(7-5)(6-\sqrt{35})$

$=2(6-\sqrt{35})=12-2\sqrt{35}$

Bình luận (2)
NH
Xem chi tiết
H24
17 tháng 7 2019 lúc 10:02

\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Ta có

:\(VT=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=|2-\sqrt{5}|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2=VP\left(đpcm\right)\)

\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)

Ta có:

\(VT=\frac{\sqrt{2}+1}{\sqrt{2}-1}\)

\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{2+\sqrt{2}+\sqrt{2}+1}{\sqrt{2}^2-1^2}\)

\(=\frac{3+2\sqrt{2}}{2-1}\)

\(=3+2\sqrt{2}=VP\left(đpcm\right)\)

Bình luận (0)
H24
17 tháng 7 2019 lúc 10:19

c,Bạn xem lại đề

\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)

Ta có:

\(VT=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)

\(=\sqrt{\frac{2^2}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{2^2}{\left(2+\sqrt{5}\right)^2}}\)

\(=\frac{2}{|2-\sqrt{5}|}-\frac{2}{|2+\sqrt{5}|}\)

\(=\frac{2\left(2+\sqrt{5}\right)}{\left(\sqrt{5}-2\right)\left(2+\sqrt{5}\right)}-\frac{2\left(\sqrt{5}-2\right)}{\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)}\)

\(=\frac{4+2\sqrt{5}-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)

\(=\frac{8}{5-4}\)

\(=8=VP\left(đpcm\right)\)

Bình luận (0)
H24
17 tháng 7 2019 lúc 10:32

\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)

\(VT=\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\sqrt{2}\left(\sqrt{5}-1\right)\sqrt{3-\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)|1-\sqrt{5}|\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\)

\(=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)^2\)

\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)

\(=\left(3+\sqrt{5}\right).2\left(3-\sqrt{5}\right)\)

\(=[3^2-\left(\sqrt{5}\right)^2].2\)

\(=4.2=8=VP\left(đpcm\right)\)

Bình luận (0)