Những câu hỏi liên quan
CC
Xem chi tiết
H24
Xem chi tiết
NL
13 tháng 7 2020 lúc 12:24

\(GT\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Ta có:

\(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Bình luận (0)
CK
Xem chi tiết
PA
Xem chi tiết
H24
24 tháng 8 2016 lúc 23:06

Từ dk suy ra 1/bc+1/ac+1/ab+1/c+1/b+1/a=6                                                             đặt 1/a=x;1/b=y;1/c=z→x+y+x+xy+yz+xz=6    ta phải cm x2+y2+z2>=3                              Ta có:2(x2+y2+z2)>=2(xy+yz+xz)  (1)                                                                                       (x-1)2>=0→x2>=2x-1      Tương tự :y2>=2y-1;z2>=2z-1                                       do đó :x2+y2+z2>=2(x+y+z)-3  (2)                                                                     cộng vế 1 vs 2 ta có:3(x2+y2+z2)>=2(x+y+z+xy+yz+xz)-3                                                                   <=>3(x2+y2+z2)>=2.6-3                                                                                             <=>x2+y2+z2>=3

 

Bình luận (0)
PN
Xem chi tiết
TN
22 tháng 4 2017 lúc 12:22

Từ \(a+b+c+ab+bc+ca=6abc\)

\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Cho \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) thì ta có:

\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế 3 BĐT trên ta có: 

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế của (1) và (2) ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
TL
16 tháng 8 2020 lúc 19:17

GT của bài toán được viết lại thành\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

áp dụng bđt Cauchy ta được

 \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

\(\frac{1}{a^2}+1\ge\frac{2}{a};\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

cộng các bất đẳng thức trên theo vế ta được \(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2\cdot6=12\)

hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

đẳng thức được chứng minh, dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
SL
Xem chi tiết
H24
6 tháng 2 2019 lúc 9:52

Đề khắm vậy -_- a + b = 3 - c thì viết luôn thành a + b + c = 3 cho rồi .... bày đặt

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\left(x;y;z>0\right)\)

\(VT=a^3+b^3+c^3+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^3+b^3+c^3+\frac{18}{a+b+c}\)

                                                                                      \(=a^3+b^3+c^3+6\)

Áp dụng bđt Cô-si cho 3 số ta đc

\(a^3+1+1\ge3\sqrt[3]{a^3.1.1}=3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

Cộng từng vế vào ta được

\(VT\ge a^3+b^3+c^3+6\ge3\left(a+b+c\right)=\left(a+b+c\right)^2\)

Lại có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(Phá ngoặc + chuyển vế -> tổng bình phương)

\(\Rightarrow VT\ge3\left(ab+bc+ca\right)\)(Đpcm)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy ....

Bình luận (0)
AO
Xem chi tiết
H24
Xem chi tiết
H24
30 tháng 6 2017 lúc 16:48

Bunhia thì phải hoặc tương đương thần chưởng @@
Có lẽ bunhia đấy :vv

Bình luận (0)
AN
30 tháng 6 2017 lúc 19:34

Câu này t dùng vi-et giải được. Nhưng để mai đi. Giờ giải bằng điện thoại thì khó quá

Bình luận (0)
AN
30 tháng 6 2017 lúc 19:35

Nhầm. Dùng tam thức bậc 2 chứ

Bình luận (0)