Số nghiệm của pt : \(2sinx-2cosx=\sqrt{2}\) thuộc đoạn \(\left[0;\frac{\Pi}{2}\right]\) là :
A . 2
B . 0
C . 3
D . 1
Trình bày bài giải chi tiết rồi mới chọn đáp án nha các bạn .
HELP ME !!!!
Giải pt
\(\cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx+2sin2x-2sinx-1}{2cosx-1}\\ \)
Câu 1: Tìm tập xác định của hàm số y=\(\dfrac{cosx-2}{1-2sinx}\)
Câu2 : Tìm m để hàm số y=\(\sqrt{m-1+2cosx}\) xác đinh trên R
câu3 : Tìm số điểm biểu diễn nghiệm của pt: 2cos5x+1
giúp e với mn ơi
1.
Hàm số xác định khi: \(1-2sinx\ne0\Leftrightarrow sinx\ne\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{6}+k2\pi\\x\ne\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
2.
Đặt \(t=cosx\left(t\in\left[-1;1\right]\right)\)
Hàm số xác định trên R khi:
\(m-1+2cosx\ge0\forall x\in R\)
\(\Leftrightarrow m\ge f\left(t\right)=1-2t\forall x\in R\)
\(\Leftrightarrow m\ge maxf\left(t\right)=f\left(-1\right)=3\)
Vậy \(m\ge3\)
Gọi S là tổng các nghiệm pt \(\frac{2sinx-\sqrt{2}}{sin\left(x+\frac{\pi}{4}\right)}=0\) thuộc đoạn (\(\frac{-7\pi}{4},\frac{9\pi}{4}\))
Tìm S
1. Pt: \(sin^22x-2cos^2x+\frac{3}{4}=0\) có nghiệm là?
2. Số nghiệm của pt: \(2cos2x+2cosx-\sqrt{2}=0\) thỏa đk: \(\frac{-\pi}{2}< x< \frac{5\pi}{2}\)?
3. Số nghiệm của pt: \(2tanx-2cotx-3=0\) trong khoảng: \(\left(\frac{-\pi}{2};\pi\right)\) là?
4. Nghiệm âm lớn nhất của pt: \(\frac{\sqrt{3}}{sin^2x}=3cotx+\sqrt{3}\) là?
5. Tổng các nghiệm của pt: \(\sqrt{3}tan^2x-\left(3+\sqrt{3}\right)tanx+3=0\) trong: \(\left(-2019\pi;2019\pi\right)\) thuộc khoảng nào trong các khoảng sau?
a. \(\left(-\infty;-3\right)\) b. \(\left(-3;5\right)\) c. (5;20) d. \(\left(20;+\infty\right)\)
6. Pt: 1 + sinx - cosx - sin2x = 0 có bao nhiêu nghiệm trên: \(\left[0;\frac{\pi}{2}\right]\)?
7. Tổng các nghiệm của pt: \(sinxcosx+\left|cosx+sinx\right|=1\) trên \(\left(0;2\pi\right)\) là?
1.
\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)
\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)
\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)
2.
\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)
\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\) mà \(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)
Có 4 nghiệm
3. ĐKXĐ: ...
\(2tanx-\frac{2}{tanx}-3=0\)
\(\Leftrightarrow2tan^2x-3tanx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)
Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)
4. ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)
\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)
5. ĐKXĐ; ...
\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)
Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)
Đáp án A đúng
Tìm điều kiện của m để phương trình \(2sinx+m=0\) có đúng 2 nghiệm thuộc đoạn \(\left[0;\pi\right]\)
tìm các nghiệm của phương trình 2sinx - 2cosx = \(\sqrt{2}\) trong đoạn [0;2\(\pi\)]
help pls :(
Phương trình lượng giác bậc nhất cơ bản mà :(
\(\Leftrightarrow\sin x-\cos x=\frac{\sqrt{2}}{2}\Leftrightarrow\sin\left(x-\frac{\pi}{4}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{4}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5\pi}{12}+k2\pi\\x=\frac{13}{12}\pi+k2\pi\end{matrix}\right.\)
\(th1:0\le\frac{5\pi}{12}+k2\pi\le2\pi\)
\(th2:0\le\frac{13}{12}\pi+k2\pi\le2\pi\)
Chặn k là okie :)
Tìm m để pt có 2 nghiệm thuộc \(\left[\dfrac{-\pi}{2};\dfrac{\pi}{2}\right]\)
(2cosx-1)(2cos2x+2cosx-m)= 3-4sin2x
Tổng các nghiệm thuộc khoảng 0 ; 3 π của phương trình sin 2 x - 2 cos 2 x + 2 sin x = 2 cos x + 4 là
A. 3 π
B. π
C. 2 π
D. π 2
Giúp mình với
Giải pt sau:
\(sin2x\left(2cosx+1\right)-cos2x-2sinx-cosx+1=0\)
cậu có đáp án bài này chưa cho mk xin với