Chứng minh
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{c}}\ge\sqrt{a}+\sqrt{b}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh các đẳng thức sau
a)\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)/a/ với a+b>0 và b≠0
b)\(\frac{\sqrt{a}++\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)với a≥0,b≥0 và a≠b
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu
Bài 1 : cho các số không âm a,b,c . Chứng minh :
a, \(\frac{a+b}{2}\ge\sqrt{ab}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
c. \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)
d, \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
cảm ơn bạn vì đã giúp mình tìm hiểu thêm câu hỏi
a) bđt cosi
b) \(\left(\sqrt{a+b}\right)=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
\(a+b+2\sqrt{ab}>a+b\)
=> đpcm
c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
d)https://olm.vn/hoi-dap/question/1003405.html
nè ngại làm
Bài toán tương đương với : : \(a+b\ge2\sqrt{ab}\)
Ta có điều hiển nhiên sau : \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(< =>a+b-2\sqrt{ab}\ge0\)
\(< =>a+b\ge2\sqrt{ab}\left(đpcm\right)\)
1/ Cho mọi số nguyên dương .Chứng minh
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}<1\)
2/ Chứng minh bất dẳng thức sau với các số a, b, c dương.
\(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}\)
3/ Chứng minh
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\) (với a, b, c dương)
b) \(\frac{a^2}{a+b}-\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\) (với a, b, c dương)
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)
a,b,c>0
a+b+c=3
chứng minh \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a}+1}\ge\frac{3\sqrt{2}}{2}\)
1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Cho a+b+c=abc. Chứng minh:
\(\frac{b}{a\sqrt{b^2+1}}+\frac{c}{b\sqrt{c^2+1}}+\frac{a}{c\sqrt{a^2+1}}\ge\frac{3}{2}\)
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\Rightarrow xy+yz+zx=1\)
WLOG \(z\ge y\ge x\)
\(\Rightarrow VT=\frac{x}{\sqrt{y^2+1}}+\frac{y}{\sqrt{z^2+1}}+\frac{z}{\sqrt{x^2+1}}\)
Biến doi \(\sqrt{y^2+1}=\sqrt{y^2+xy+yz+zx}\)
Còn lại tương tự.
Theo bđt Holder:\(VT.VT.\left[\Sigma_{cyc}x\left(y^2+xy+yz+zx\right)\right]\ge\left(x+y+z\right)^3\)
\(\Rightarrow VT^2\ge\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\)
Giờ cần chứng minh: \(\frac{\left(x+y+z\right)^3}{xy\left(x+2y\right)+yz\left(y+2z\right)+zx\left(z+2x\right)}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
bđt cuối tương đương
\(\frac{1}{6}\left[\Sigma_{cyc}\left(5x+7y+3z\right)\left(x-y\right)^2\right]+3\left(x-y\right)\left(y-z\right)\left(z-x\right)\ge0\)
Đứng với cái mình đã WLOG ở trên
Mình nghĩ bài này có điều kiện a, b,c > 0.
Bạn nub đánh nhầm đoạn" \(VT^2\ge\frac{\left(x+y+z\right)^3}{..}\) ..Cần chứng minh..." rồi nhé, nhưng bất đẳng thức cần chứng minh cuối cùng vẫn đúng: \(4\left(x^3+y^3+z^3\right)+3\left(x^2y+y^2z+z^2x\right)\ge6\left(xy^2+yz^2+zx^2\right)+3xyz\)
Nhưng:
\(VT-VP=\frac{\Sigma\left(6xy+4y^2+yz+\frac{5}{2}z^2\right)\left(x-y\right)^2}{x+y+z}\ge0\)
Đúng vì x, y, z > 0 do a, b, c > 0.
Ngoài ra @nub bài này bạn không giả sử z >= y >= x được nhé :P
Cho \(a,b,c\in R\).Chứng minh: \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\sqrt{2}}{4}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
cho a,b,c >0 thỏa \(a+b+c\le2\)
chứng minh \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{\sqrt{97}}{2}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{\left(a+b+c\right)^2+\frac{16}{\left(a+b+c\right)^2}+\frac{65}{\left(a+b+c\right)^2}}\)
\(VT\ge\sqrt{2\sqrt{\frac{16\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}+\frac{65}{2^2}}=\frac{\sqrt{97}}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)