Những câu hỏi liên quan
ND
Xem chi tiết
NM
13 tháng 7 2023 lúc 14:24

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

Bình luận (0)
TH
Xem chi tiết
TC
14 tháng 7 2021 lúc 16:12

undefined

Bình luận (0)
TC
14 tháng 7 2021 lúc 16:14

undefined

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 8 2021 lúc 21:16

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

Bình luận (0)
MM
Xem chi tiết
NT
29 tháng 8 2021 lúc 20:41

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)

Bình luận (0)
HT
Xem chi tiết
HT
6 tháng 7 2023 lúc 15:15

phân tích đa thức thành nhân tử

 

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 2 2018 lúc 5:20

Ta có: VT = ( x 3  +  x 2 y + x y 2  +  y 3 )(x - y)

      = ( x- y). ( x 3  +  x 2 y + x y 2  +  y 3 ).

      = x. ( x 3  +  x 2 y + x y 2  +  y 3  ) - y( x 3  +  x 2 y + x y 2  +  y 3 )

      =  x 4  +  x 3 y +  x 2 y 2  + x y 3 –  x 3 y –  x 2 y 2  – x y 3  –  y 4

      =  x 4  –  y 4  = VP (đpcm)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Bình luận (0)
NK
Xem chi tiết
LL
25 tháng 8 2021 lúc 17:43

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

Bình luận (0)
NT
25 tháng 8 2021 lúc 23:17

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

Bình luận (0)
NA
Xem chi tiết
AD
15 tháng 10 2023 lúc 11:25

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\\ =x\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\\ =x\left(x^{16}-y^{16}\right)+xy^{16}\\ =x^{17}-xy^{16}+xy^{16}\\ =x^{17}\)

Bình luận (0)
H9
15 tháng 10 2023 lúc 11:26

\(x\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x-y\right)+xy^{16}\)

\(=x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^4-y^4\right)\left(x^4+y^4\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^8-y^8\right)\left(x^8+y^8\right)+xy^{16}\)

\(=x\left(x^{16}-y^{16}\right)+xy^{16}\)

\(=x^{17}-xy^{16}+xy^{16}\)

\(=x^{17}\)

Bình luận (0)
H24
15 tháng 10 2023 lúc 11:28

\(x(x+y)(x^2+y^2)(x^4+y^4)(x^8+y^8)(x-y)+xy^{16}\\=x(x-y)(x+y)(x^2+y^2)(x^4+y^4)(x^8+y^8)+xy^{16}\\=x(x^2-y^2)(x^2+y^2)(x^4+y^4)(x^8+y^8)+xy^{16}\\=x(x^4-y^4)(x^4+y^4)(x^8+y^8)+xy^{16}\\=x(x^8-y^8)(x^8+y^8)+xy^{16}\\=x(x^{16}-y^{16})+xy^{16}\\=x^{17}-xy^{16}+xy^{16}\\=x^{17}\\Toru\)

Bình luận (0)
VT
Xem chi tiết
NM
19 tháng 10 2021 lúc 15:57

\(g,=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)=\left(x^4-y^4\right)\left(x^4+y^4\right)=x^8-y^8\)

\(b,=\left(x^2-9\right)\left(x-4\right)-\left(x^3+3x^2+3x+1\right)\\ =x^3-4x^2-9x+36-x^3-3x^2-3x-1\\ =-7x^2-12x+36\)

Bình luận (0)
H24
Xem chi tiết
AH
11 tháng 7 2021 lúc 18:53

Lời giải:
a.

$x^3+y^3=(x+y)^3-3xy(x+y)=9^3-3.9.18=243$

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=[9^2-2.18]^2-2.18^2=1377$

Nếu $x\geq y$ thì:

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$=|x-y|[(x+y)^2-xy]=\sqrt{(x+y)^2-4xy}[(x+y)^2-xy]$

$=\sqrt{9^2-4.18}(9^2-18)=189$

Nếu $x< y$ thì $x^3-y^3=-189$

b.

$A=(x+y)^2-6(x+y)+y-5$

$=(-9)^2-6(-9)+y-5=130+y$

Chưa đủ cơ sở để tính biểu thức.

Bình luận (1)
NT
11 tháng 7 2021 lúc 23:54

a) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot18\cdot9=243\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)

\(=\left(9^2-2\cdot18\right)^2-2\cdot18^2\)

\(=45^2-2\cdot324\)

=1377

Bình luận (0)