h(x)=x(x-1)+1
Cho đa thức ; f(x)=x3-2x2+3x+1 ; g(x) = x3+x-1 ; h(x) = 2x2-1
a)Tính f(x)-g(x)+h(x)
b)Tìm x sao cho f(x)-g(x)+h(x)=0
`a,f(x)-g(x)+h(x)`
`=x^3-2x^2+3x+1-(x^3+x-1)+2x^2-1`
`=(x^3-x^3)+(2x^2-2x^2)+3x+1+1-1`
`=0+0+3x+1`
`=3x+1`
`b,f(x)-g(x)+h(x)=0`
`=>3x+1=0`
`=>x=-1/3`
Cho H=x^2/(x+y)(1-y) - y^2/(x+y)(1-x) -x^2y^2/(x+1)(1-y)
1.Rút gọn biểu thức H
2.tìm (x;y) nguyên tố để H=-6
1. Cho f(x)=x^2n-x^20-1+x^2n-2-...+x^2-x+1.
g(x)=1-x+x^2-x-...+x^2n-2-x^2n-1+x^x^2n
tính h(x) tại x=2017 biết
h(x)=(f(x)+g(x)).(g.(x)-f(x))
Xác định hàm chẵn hay hàm lẻ :
y=f(x)= | x+1| + | x-1| / | x+1| - | x-1|
\(f\left(-x\right)=\dfrac{\left|-x+1\right|+\left|-x-1\right|}{\left|-x+1\right|-\left|-x-1\right|}\)
\(=\dfrac{\left|x-1\right|+\left|x+1\right|}{\left|x-1\right|-\left|x+1\right|}=-f\left(x\right)\)
=>f(x) là hàm số lẻ
cm giá trị của H ko phụ thuộc vào x
H = ( x-1 ) ( x-2 ) ( x-3 ) -x (x + 1) (x-1) + (2x - 1) ( 3x -2 ) -5x +9
Tính các giới hạn sau:
1. \(\lim\limits_{x\rightarrow a}\dfrac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)
2. \(\lim\limits_{x\rightarrow1}\left(\dfrac{1}{1-x}-\dfrac{3}{1-x^3}\right)\)
3. \(\lim\limits_{h\rightarrow0}\dfrac{\left(x+h\right)^3-x^3}{h}\)
1: \(A=\dfrac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)
\(=\dfrac{x^2-xa-x+a}{\left(x-a\right)\left(x^2+ax+a^2\right)}\)
\(=\dfrac{\left(x-a\right)\left(x-1\right)}{\left(x-a\right)\left(x^2+ax+a^2\right)}=\dfrac{x-1}{x^2+ax+a^2}\)
\(lim_{x->a}A=lim_{x->a}\left(\dfrac{x-1}{x^2+ax+a^2}\right)\)
\(=\dfrac{a-1}{a^2+a^2+a^2}=\dfrac{a-1}{3a^2}\)
2: \(B=\dfrac{1}{1-x}-\dfrac{3}{1-x^3}\)
\(=\dfrac{-1}{x-1}+\dfrac{3}{x^3-1}\)
\(=\dfrac{-x^2-x-1+3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-x-2}{x^2+x+1}\)
\(lim_{x->1}\left(B\right)=\dfrac{-1-2}{1^2+1+1}=\dfrac{-3}{3}=-1\)
3: \(C=\dfrac{\left(x+h\right)^3-x^3}{h}=\dfrac{\left(x+h-x\right)\left(x^2+2xh+h^2+x^2+hx+x^2\right)}{h}\)
\(=3x^2+3hx\)
\(lim_{h->0}\left(C\right)=3x^2+3\cdot0\cdot x=3x^2\)
Bài 1: Cho f(x) = 6x7 - 5x3 + 1
g(x) = -3 + 2x - 4x7
h(x) = -2x7 + 2x + 7x2
a) Tính f(x) + g(x) + h(x).
b) Tính f(x) + g(x) - h(x).
a) \(f\left(x\right)+g\left(x\right)+h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-2x^7+2x+7x^2\)
\(=-5x^3+7x^2+4x-2\)
b) \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=6x^7-5x^3+1-3+2x-4x^7-\left(-2x^7+2x+7x^2\right)\)
\(=2x^7-5x^3+2x-2+2x^7-2x-7x^2\)
\(=4x^7-5x^3-7x^2-2\)
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
cho các đa thức
f(x) = x^2 - (m-1)x+3m-2
g(x)= x^2 -2 (m+1) x-5m+1
h(x) = -2x^2 +mx - 7m +3
Tìm m biết :
a) đa thức f(x) có nghiệm là -1
b) đa thức g(x) có nghiệm là 2
c) đa thức h(x) có nghiệm là -1
d) f(1) = g(2) ; g(1) =h (-2)
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)