Tam giác ABC vuông tại A có AB = 2AC, đường cao AH. Tính tỉ số \(\frac{HB}{HC}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/cho tam giác abc vuông tại a đường cao AH=2cm,AB=1/2AC. tính AB,AC,HB,HC
2/cho tam giác abc vuông tại a đường cao AH=12cm.tính cạnh huyền BC,biết \(\dfrac{HB}{HC}\)=\(\dfrac{1}{3}\)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Cho tam giác ABC vuông tại A có đường cao AH .Biết \(\frac{HB}{HC}=\frac{1}{8}\) . Tính tỉ số \(\frac{AB}{BC}\).
Cho tam giác ABC vuông tại A, đường cao AH. Biết tỉ số \(\frac{AB}{AC}=\frac{2}{3}\), AH = 6a. Tính HB, HC, AB, AC
Tam giác ABC vuông tại A có AB=2AC
a/ tính AB
b/ kẻ AH là đường cao. Tính AH, HB
Cho tam giác ABC vuông tại A, đường cao AH. Biết AH bằng 4.8cm, tỉ số của hai cạnh AB và AC là 3/4 Tính AB, AC, BC, HB, HC
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\\ \to\dfrac{1}{23,04}=\dfrac{1}{AB^2}+\dfrac{1}{\dfrac{3}{4}AB^2}\\ \to\dfrac{1}{AB^2}+\dfrac{4}{3AB^2}=\dfrac{1}{23,04}\\ \to\dfrac{7}{3AB^2}=\dfrac{1}{23,04}\\ \to AB^2=53,76\\ \to AB=\dfrac{8\sqrt{21}}{5}\left(cm\right)\\ \to AC=\dfrac{32\sqrt{21}}{15}\left(cm\right)\\ \to BC=\sqrt{AB^2+AC^2}=\dfrac{8\sqrt{21}}{3}\left(cm\right)\)
Hệ thức lượng:
\(HB=\dfrac{AB^2}{BC}=\dfrac{24\sqrt{21}}{25}\left(cm\right)\\ HC=\dfrac{AC^2}{BC}=\dfrac{7168-200\sqrt{21}}{75}\left(cm\right)\)
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
Bài 2:
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
1/Cho tam giác ABC vuông tại A, đường cao AH=30cm, \(\dfrac{AB}{AC}\)=\(\dfrac{5}{6}\). Tính HB,HC
2/Cho tam giác ABC có AB=5cm, AC=12cm, BC=13cm. Kẻ đường cao AH. Tính HB, HC
\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)
Áp dụng HTL tam giác
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)
Bài 1:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)
\(\Leftrightarrow HC=36\left(cm\right)\)
hay HB=25(cm)
Bài 2:
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)
CHO TAM GIÁC ABC VUÔNG TẠI , CÓ ĐƯỜNG CAO AH(VỚI H THUỘC BC)
BIẾT RẰNG \(\frac{AB}{AC}=\frac{2}{3}\) TÍNH TỈ SỐ \(\frac{HB}{HC}\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác ABC vuông, đường cao AH ta có:
\(AB^2=BH\cdot BC\\ AC^2=CH\cdot BC\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{HB}{HC}\)
\(\Rightarrow\frac{HB}{HC}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)