A=\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{5}}\)
rút gọn hộ mik vs
4)\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{8-2\sqrt{15}}\)
5)\(\sqrt{5+2\sqrt{6}}\) +\(\sqrt{8-2\sqrt{15}}\)
4: \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\)
\(=2\sqrt{3}\)
4) \(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{5}+\sqrt{3}-\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}\)
5) \(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{2}+\sqrt{3}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)
tính
a.\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
b. \(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\\ =\sqrt{\sqrt{5^2}+2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}-\sqrt{\sqrt{5^2}-2\sqrt{5}.\sqrt{3}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\\ =\left|\sqrt{5}+\sqrt{3}\right|-\left|\sqrt{5}-\sqrt{3}\right|\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}\\ =2\sqrt{3}\)
\(b,\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{\sqrt{2^2}+2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}+\sqrt{\sqrt{2^2}-2.\sqrt{3}.\sqrt{2}+\sqrt{3^2}}\\ =\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\\ =\left|\sqrt{2}+\sqrt{3}\right|+\left|\sqrt{2}-\sqrt{3}\right|\\ =\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
a) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(=\sqrt{5-2\cdot\sqrt{5\cdot3}+3}-\sqrt{5+2\cdot\sqrt{5\cdot3}+1}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(=-2\sqrt{3}\)
b. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{3-2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)\)
\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
Thu gọn
a) A=\(\dfrac{2\left(\sqrt{2}+\sqrt{6}\right)}{3\sqrt{2+\sqrt{3}}}\) b)B=\(\sqrt{8-2\sqrt{15}}-\sqrt{\left(3-3\sqrt{5}\right)^2}\)
c) C=\(2\sqrt{8\sqrt{3}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}}\)
a: \(A=\dfrac{2\sqrt{2}\left(\sqrt{3}+1\right)}{3\cdot\sqrt{2+\sqrt{3}}}=\dfrac{4\left(\sqrt{3}+1\right)}{3\cdot\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3\left(\sqrt{3}+1\right)}=\dfrac{4}{3}\)
b: \(B=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\left|3\sqrt{5}-3\right|\)
\(=\sqrt{5}-\sqrt{3}-3\sqrt{5}+3=3-\sqrt{3}-2\sqrt{5}\)
Rút gọn: \(\frac{\sqrt{12-2\sqrt{35}}+\sqrt{8-2\sqrt{15}}+\sqrt{5-2\sqrt{6}}}{\sqrt{12+2\sqrt{35}}-\sqrt{8+2\sqrt{15}}+\sqrt{5-2\sqrt{6}}}\)
\(A=\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3}-\sqrt{5}\)
B=\(B=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8}-2\sqrt{15}\)
\(Cho\sqrt{8-a}+\sqrt{5+a}=5tinh\sqrt{\left(8-a\right)\left(5+a\right)}\)
a: \(A=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\cdot\sqrt{6-2\sqrt{5}}\)
\(=\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)\)
\(=18-6\sqrt{5}+6\sqrt{5}-10=8\)
b: \(B=\left(\sqrt{5}+\sqrt{3}\right)\cdot\sqrt{2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\left(5-3\right)=2\cdot2=4\)
Tính :
a) \(\sqrt{49-12\sqrt{5}}\)- \(\sqrt{21-8\sqrt{5}}\)
b) \(\sqrt{6+2\sqrt{5}}\)- \(\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{8+2\sqrt{15}}\)- \(\sqrt{8-2\sqrt{15}}\)
Tính :
a)\(\sqrt{49-12\sqrt{5}}\) - \(\sqrt{21-8\sqrt{5}}\)
b) \(\sqrt{6+2\sqrt{5}}\)- \(\sqrt{6-2\sqrt{5}}\)
c) \(\sqrt{8+2\sqrt{15}}\)- \(\sqrt{8-2\sqrt{15}}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
\(a,\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{3}+\sqrt{5}-\left(\sqrt{5}+1\right)=\sqrt{3}-1\\ b,=3-2\sqrt{2}-\left(3\sqrt{2}+1\right)=2-5\sqrt{2}\\ c,=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\\ d,=\sqrt{11}+1-\left(\sqrt{11}-1\right)=2\\ e,=\sqrt{7}-\sqrt{3}-\left(\sqrt{7}-\sqrt{2}\right)=\sqrt{2}-\sqrt{3}\)
Khai phương một tích :a\(\sqrt{8-2\sqrt{15}}-\sqrt{8+\sqrt{2\sqrt{15}}}\)
b\(\sqrt{4-\sqrt{10}-2\sqrt{5}}-\sqrt{4+\sqrt{10-2\sqrt{5}}}\)
a)\(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)\(=\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{3}.\sqrt{5}+3}\)
\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)\(=I\sqrt{5}-\sqrt{3}I-I\sqrt{5}+\sqrt{3}I\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\)
cho mình sửa lại câu a là\(\sqrt{8+2\sqrt{15}nhe}moinguoi\)