Những câu hỏi liên quan
PN
Xem chi tiết
KN
Xem chi tiết
H9
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
HN
Xem chi tiết
HN
Xem chi tiết
AH
25 tháng 6 2018 lúc 0:26

Câu 1:

ĐK: \(0\leq x\leq 1\)

Áp dụng bđt Bunhiacopxky:

\(\text{VT}^2=(\sqrt{1-\sqrt{x}}+\sqrt{4+x})^2\leq [1-\sqrt{x}+\frac{4+x}{2}](1+2)\)

\(\Leftrightarrow \text{VT}^2\leq 3\left(3+\frac{x-2\sqrt{x}}{2}\right)\)

\(0\leq x\leq 1\Rightarrow x-2\sqrt{x}\leq \sqrt{x}-2\sqrt{x}=-\sqrt{x}\leq 0\)

Do đó: \(\text{VT}^2\leq 3.3=9\Rightarrow \text{VT}\leq 3\)

Dấu bằng xảy ra khi :

\(\frac{\sqrt{1-\sqrt{x}}}{1}=\frac{\sqrt{4+x}}{2}; x=\sqrt{x}\Rightarrow x=0\)

Bình luận (0)
AH
25 tháng 6 2018 lúc 0:37

2)

\(\sqrt[3]{x+45}-\sqrt[3]{x-16}=1\)

Đặt \(\sqrt[3]{x+45}=a; \sqrt[3]{x-16}=b\). Ta thu được HPT:

\(\left\{\begin{matrix} a-b=1\\ a^3-b^3=61\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a-b=1\\ (a-b)^3+3ab(a-b)=61\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a-b=1\\ 1+3ab=61\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a-b=1\\ ab=20\end{matrix}\right.\)

Thay \(a=b+1\Rightarrow (b+1)b=20\)

\(\Leftrightarrow b^2+b-20=0\Leftrightarrow (b-4)(b+5)=0\)

\(\Rightarrow \left[\begin{matrix} b=4\rightarrow x=80\\ b=-5\rightarrow x=-109\end{matrix}\right.\)

Bình luận (2)
HT
Xem chi tiết
H24
Xem chi tiết
NT
28 tháng 7 2023 lúc 16:37

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

Bình luận (0)
HM
28 tháng 7 2023 lúc 16:50

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)

Bình luận (0)
KN
Xem chi tiết
VH
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Bình luận (0)
VH
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Bình luận (0)
PT
Xem chi tiết
VG
31 tháng 10 2017 lúc 20:52

Đặt \(\sqrt[3]{x+45}=a\Rightarrow a^3=x+45\)

\(\sqrt[3]{x-16}=b\Rightarrow b^3=x-16\)

Ta có:\(\hept{\begin{cases}a-b=1\\a^3-b^3=61\end{cases}\Rightarrow\hept{\begin{cases}b=a-1\\\left(a-b\right)^3+3ab\left(a-b\right)=61\end{cases}}}\)

\(\Rightarrow1+3a\left(a-1\right)=61\) (vì a-b=1)

\(\Leftrightarrow a^2-a-20=0\)

\(\Leftrightarrow\left(a-5\right)\left(a+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=5\\a=-4\end{cases}\Rightarrow\orbr{\begin{cases}a^3=125\\a^3=-64\end{cases}\Rightarrow}\orbr{\begin{cases}x=80\\x=-109\end{cases}}}\)

Vậy nghiệm của pt là: x=80;x=-109

Bình luận (0)
PT
2 tháng 11 2017 lúc 12:05

mình cảm ơn bạn see you again

Bình luận (0)
PT
Xem chi tiết
AH
16 tháng 7 2020 lúc 14:01

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

Bình luận (0)
AH
16 tháng 7 2020 lúc 14:09

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

Bình luận (0)