Những câu hỏi liên quan
LD
Xem chi tiết
TN
12 tháng 10 2016 lúc 22:39

a/ \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{22}\cdot17\)

17 chia hết 17 nên 222 . 17 chia hết 17 => dpcm

b/ \(19^{19}+69^{19}=\left(19+69\right)\left(19^{19-1}-19^{19-2}\cdot69+19^{19-3}\cdot69^2-19^{19-4}\cdot69^3+...+69^{19-1}\right)\)

\(=88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)

88 chia hết 44 nên \(88\cdot\left(19^{18}-19^{17}\cdot69+...+69^{18}\right)\)chia hết 44 => dpcm

Bình luận (0)
HP
Xem chi tiết
PD
14 tháng 3 2018 lúc 17:49

a)Đặt \(A=8^5+2^{11}\)

\(A=\left(2^3\right)^5+2^{11}\)

\(A=2^{15}+2^{11}\)

\(A=2^{11}\left(2^4+1\right)\)

\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)

Bình luận (0)
DL
Xem chi tiết
KK
25 tháng 11 2018 lúc 8:51

19^19 + 69^19 chia hết cho 44
Ta có a^n + b^n =(a + b)[a^(n - 1) - a^(n - 2).b + a^(n - 3).b^2 - ......+b^(n - 1) với n lẻ
19^19 + 69^19 = (19 + 69)(19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
Vì 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44.

Bình luận (0)
PH
25 tháng 11 2018 lúc 8:52

\(a^n+b^n⋮\left(a+b\right)\) với n là số lẻ (bạn không cần chứng minh đâu)

Ta có: \(\left(19^{19}+69^{19}\right)⋮\left(19+69\right)\Rightarrow19^{19}+69^{19}⋮88\Rightarrow19^{19}+69^{19}⋮44\)

Bình luận (0)
VL
17 tháng 3 2019 lúc 10:33

Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

Bình luận (0)
LA
Xem chi tiết
MT
5 tháng 10 2019 lúc 21:28

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

Bình luận (0)
NC
5 tháng 10 2019 lúc 21:30

Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
HD
5 tháng 10 2019 lúc 21:30

https://olm.vn/hoi-dap/detail/97390453659.html

Bình luận (0)
H24
Xem chi tiết
H24
18 tháng 11 2015 lúc 20:20

Làm gì có chuyện 1919+6919=(19+69)19

Bình luận (0)
YC
Xem chi tiết
NT
15 tháng 10 2022 lúc 21:26

a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)

\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)

b: \(=69\left(69-5\right)=69\cdot64⋮32\)

 

Bình luận (0)
BT
Xem chi tiết
TL
Xem chi tiết
PG
28 tháng 7 2021 lúc 22:20

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

Bình luận (1)
NK
Xem chi tiết
NT
9 tháng 11 2017 lúc 21:57

a) 85+211

=(23)5+211=215+211

=211(24+1)

=211.17 (chia hết cho 17 )            

Vậy 85+211 chia hết cho 17

b)Ta có a^n + b^n

=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19

= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

Bình luận (0)