Những câu hỏi liên quan
H24
Xem chi tiết
H9
12 tháng 8 2023 lúc 15:13

a) \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)

\(=\sqrt{10^2\cdot2}-\sqrt{4^2\cdot2}+\sqrt{6^2\cdot2}\)

\(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}\)

\(=\left(10-4+6\right)\sqrt{2}\)

\(=12\sqrt{2}\)

b) \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)

\(=4\cdot2\sqrt{5}-3\cdot5\sqrt{5}+5\cdot3\sqrt{5}-3\sqrt{5}\)

\(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}\)

\(=\left(8-15+15-3\right)\sqrt{5}\)

\(=5\sqrt{5}\)

c) \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)

\(=\left(2\cdot2\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\cdot2\sqrt{5}-2\sqrt{2}\right)\)

\(=\left(3\sqrt{5}-3\sqrt{2}\right)\left(72-10\sqrt{5}-2\sqrt{2}\right)\)

Bình luận (0)
NT
12 tháng 8 2023 lúc 15:05

loading...  

Bình luận (0)
AQ
Xem chi tiết
LL
4 tháng 10 2021 lúc 19:50

1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)

2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)

3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)

4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)

 

Bình luận (0)
DV
Xem chi tiết
NT
15 tháng 7 2021 lúc 23:09

a) \(\dfrac{1}{2}\sqrt{20}+5=\dfrac{1}{2}\cdot2\sqrt{5}+5=5+\sqrt{5}\)

b) \(\sqrt{16}+\sqrt{64}=4+8=12\)

c) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}=9\sqrt{2}-\sqrt{5}\)

d) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{2}=2-\sqrt{2}+\sqrt{2}=2\)

Bình luận (0)
CN
Xem chi tiết
PG
17 tháng 8 2020 lúc 20:02

\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)

\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)

\(=14-14\sqrt{2}+7+14\sqrt{2}=21\)

\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}=6\sqrt{3}-12\sqrt{3}+20\sqrt{3}=14\sqrt{3}\)

câu tiếp tương tự câu thứ 2 nha

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NT
12 tháng 8 2020 lúc 22:30

a) Ta có: \(A=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{3}+\sqrt{5}\right)-\left(\sqrt{45}-\sqrt{20}\right)\)

\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\left(\sqrt{9}-\sqrt{4}\right)\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}+\sqrt{3}\right)-\sqrt{5}\)(Vì \(\sqrt{5}>\sqrt{3}\))

\(=5-3-\sqrt{5}\)

\(=2-\sqrt{5}\)

b) Ta có: \(B=\left(\frac{\sqrt{21}-\sqrt{3}}{\sqrt{7}-1}-\frac{\sqrt{15}-\sqrt{3}}{1-\sqrt{5}}\right)\left(\frac{1}{2}\sqrt{6}-\sqrt{\frac{3}{2}}+3\sqrt{\frac{2}{3}}\right)\)

\(=\left(\frac{\sqrt{3}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}+\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{3}{2}}+\sqrt{6}\right)\)

\(=\sqrt{3}+\sqrt{3}+\sqrt{6}\)

\(=2\sqrt{3}+\sqrt{6}\)

c) Ta có: \(C=2\sqrt{3}+\sqrt{7-4\sqrt{3}}+\left(\sqrt{\frac{1}{3}}-\sqrt{\frac{4}{3}}+\sqrt{3}\right):\sqrt{3}\)

\(=2\sqrt{3}+\sqrt{4-2\cdot2\cdot\sqrt{3}+3}+\sqrt{\frac{1}{3}:3}-\sqrt{\frac{4}{3}:3}+\sqrt{3:3}\)

\(=2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\frac{1}{9}}-\sqrt{\frac{4}{9}}+\sqrt{1}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|+\frac{1}{3}-\frac{2}{3}+1\)

\(=2\sqrt{3}+2-\sqrt{3}+\frac{2}{3}\)(Vì \(2>\sqrt{3}\))

\(=\sqrt{3}+\frac{8}{3}\)

d) Ta có: \(D=\left(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\right):\frac{1}{\sqrt{7-4\sqrt{3}}}\)

\(=\left(\frac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\right)\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{60}{20}\cdot\left|2-\sqrt{3}\right|\)

\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))

\(=6-3\sqrt{3}\)

Bình luận (0)
QT
Xem chi tiết
MP
3 tháng 1 2019 lúc 13:12

1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)

2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)

3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2} \)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)

4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)

5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)

6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)

7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)

8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2


Bình luận (0)
HT
4 tháng 1 2019 lúc 12:47
https://i.imgur.com/pmexRQv.jpg
Bình luận (0)
HT
4 tháng 1 2019 lúc 12:48
https://i.imgur.com/Fbx1rk4.jpg
Bình luận (0)
QE
Xem chi tiết
NT
10 tháng 7 2021 lúc 11:06

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

c) Ta có: \(C=10\sqrt{\dfrac{1}{5}}+\dfrac{1}{5}\sqrt{125}-2\sqrt{20}\)

\(=\dfrac{10}{\sqrt{5}}+\dfrac{1}{5}\cdot5\sqrt{5}-2\cdot2\sqrt{5}\)

\(=2\sqrt{5}+\sqrt{5}-4\sqrt{5}\)

\(=-\sqrt{5}\)

Bình luận (0)
NT
10 tháng 7 2021 lúc 11:09

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

Bình luận (0)
QE
Xem chi tiết
NT
10 tháng 7 2021 lúc 11:09

e) Ta có: \(E=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\sqrt{3}+1-2+\sqrt{3}\)

\(=2\sqrt{3}-1\)

f) Ta có: \(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+2\)

=3

Bình luận (0)
NT
10 tháng 7 2021 lúc 11:11

a) Ta có: \(A=3\sqrt{20}-\sqrt{45}+2\sqrt{18}+\sqrt{72}\)

\(=6\sqrt{5}-3\sqrt{5}+6\sqrt{2}+6\sqrt{2}\)

\(=3\sqrt{5}+12\sqrt{2}\)

b) Ta có: \(B=\dfrac{12}{3-\sqrt{5}}-\dfrac{16}{\sqrt{5}+1}\)

\(=\dfrac{12\left(3+\sqrt{5}\right)}{4}-\dfrac{16\left(\sqrt{5}-1\right)}{4}\)

\(=3\left(3+\sqrt{5}\right)-4\left(\sqrt{5}-1\right)\)

\(=9+3\sqrt{5}-4\sqrt{5}+4\)

\(=13-\sqrt{5}\)

Bình luận (0)
NT
Xem chi tiết
NM
19 tháng 10 2021 lúc 20:03

\(a,=\sqrt{5}\left(2\sqrt{5}-3\right)+3\sqrt{5}=10-3\sqrt{5}+3\sqrt{5}=10\\ b,=5-\sqrt{3}-\left(2-\sqrt{3}\right)=3\\ c,=\dfrac{2\left(\sqrt{5}-1\right)}{4}-\dfrac{2\left(3+\sqrt{5}\right)}{4}=\dfrac{2\sqrt{5}-2-6-2\sqrt{5}}{4}=\dfrac{-8}{4}=-2\)

Bình luận (0)