Phương trình : \(cos^22x+cos2x-\frac{3}{4}=0\) có bao nhiêu nghiệm \(x\in\left(-2\Pi;7\Pi\right)\) ?
A . 16
B . 20
C . 18
D . 19
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
Tổng các nghiệm của phương trình \(2\cos^22x+5\cos2x-3=0\) trong khoảng \(\left(0;2\pi\right)\)
Lời giải:
$2\cos ^22x+5\cos 2x-3=0$
$\Leftrightarrow (2\cos 2x-1)(\cos 2x+3)=0$
$\Leftrightarrow 2\cos 2x-1=0$ (chọn) hoặc $\cos 2x=-3$ (loại)
Vậy $2\cos 2x-1=0$
$\Leftrightarrow \cos 2x=\frac{1}{2}$
$\Rightarrow x=\frac{\pm \pi}{3}+2k\pi$ với $k$ nguyên
Để nghiệm trong khoảng $(0;2\pi)$ thì $k=0$ với họ nghiệm $(1)$ và $k=1$ với họ nghiệm $(2)$
Vậy nghiệm của pt thỏa đề là:
$x=\frac{\pi}{3}; x=\frac{5}{3}\pi$
Tổng nghiệm: $\frac{\pi}{3}+\frac{5\pi}{3}=2\pi$
Nghiệm của phương trình : \(cos^4x-cos2x+2sin^6x=0\)
Tổng các nghiệm phương trình \(cos4x=cos^23x\) trong khoảng \(\left(-\pi;\pi\right)\)
Tìm m để phương trình \(cos2x-\left(2m+1\right)cosx+m+1=0\) có nghiệm \(x\in\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\)
a/
\(cos^4x-\left(1-2sin^2x\right)+2sin^6x=0\)
\(\Leftrightarrow\left(cos^2x+1\right)\left(cos^2x-1\right)+2sin^2x\left(sin^4x+1\right)=0\)
\(\Leftrightarrow-sin^2x\left(cos^2x+1\right)+2sin^2x\left(sin^4x+1\right)=0\)
\(\Leftrightarrow sin^2x\left(2sin^4x-cos^2x+1\right)=0\)
\(\Leftrightarrow sin^2x\left(2sin^4x+sin^2x\right)=0\)
\(\Leftrightarrow sin^4x\left(2sin^2x+1\right)=0\)
\(\Leftrightarrow sinx=0\)
\(\Leftrightarrow x=k\pi\)
b/
\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)
\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)
\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)
Bạn tự cộng lại
c/
\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)
\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)
\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)
\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)
Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho
Mà \(-1< cosx< 0\Rightarrow-1< m< 0\)
Giải phương trình \(\cos2x+2\cos x+2\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)+3=0\)
số nghiệm của phương trình \(\cos\left(\frac{x}{2}+\frac{\pi}{4}\right)=0\) thuộc khoảng \(\left(\pi;8\pi\right)\)là bao nhiêu ?
Giải phương trình:
1, \(3\sin^22x+\cos^22x=6\sin x.\cos x\)
2, \(3\cos^2x+4\sin\left(\frac{3\pi}{2}-x\right)+1=0\)
3, \(\cos^22x+2\sqrt{3}\cos x.\sin x+\sin2x=1+\sqrt{3}\)
4, \(4\cos2x+5\sin x=4\sin3x+5\)
Mọi người giúp mình với ạ!!! Mình cảm ơn nhiều!!!
1.
\(\Leftrightarrow3sin^22x+1-sin^22x=3sin2x\)
\(\Leftrightarrow2sin^22x-3sin2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)
\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)
\(\Leftrightarrow3cos^2x-4cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)
\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)
\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
Tìm m để phương trình sau có nghiệm:
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt{3}.sin2x-cos2x\)
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)
\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)
\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)
\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)
\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)
\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)
\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)
Phương trình có nghiệm khi và chỉ khi
\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)
Phương trình : \(cos^22x+cos2x-\frac{3}{4}=0\) có nghiệm là :
A . \(x=\pm\frac{2\Pi}{3}+k\Pi\)
B . \(x=\pm\frac{\Pi}{3}+k\Pi\)
C . \(x=\pm\frac{\Pi}{6}+k\Pi\)
D . \(x=\pm\frac{\Pi}{6}+k2\Pi\)
TÍnh tổng các nghiệm của phương trình: \(8\cos x\cos2x\left(2\cos^22x-1\right)=1\) trên đoạn \(\left[-\pi;2\pi\right]\)
số nghiệm của phương trình \(\frac{\sin3x}{\cos x+1}=0\) thuộc đoạn \(\left[2\pi;4\pi\right]\)là bao nhiêu ?