Bài 3: Một số phương trình lượng giác thường gặp

HH

Giải phương trình:

1, \(3\sin^22x+\cos^22x=6\sin x.\cos x\)

2, \(3\cos^2x+4\sin\left(\frac{3\pi}{2}-x\right)+1=0\)

3, \(\cos^22x+2\sqrt{3}\cos x.\sin x+\sin2x=1+\sqrt{3}\)

4, \(4\cos2x+5\sin x=4\sin3x+5\)

Mọi người giúp mình với ạ!!! Mình cảm ơn nhiều!!!

NL
5 tháng 9 2020 lúc 20:14

1.

\(\Leftrightarrow3sin^22x+1-sin^22x=3sin2x\)

\(\Leftrightarrow2sin^22x-3sin2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:17

b/

\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)

\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)

\(\Leftrightarrow3cos^2x-4cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
5 tháng 9 2020 lúc 20:23

c/

\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)

\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

d/

\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)

\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
MN
Xem chi tiết
SK
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
SK
Xem chi tiết
KG
Xem chi tiết
JE
Xem chi tiết
HM
Xem chi tiết