Biết xy=16. Tìm gtnn của A=(√x+√y)/√xy
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt
cho x,y>0. tìm GTNN của \(A=\dfrac{x^2+y^2}{xy}+\dfrac{\sqrt{xy}}{x+y}\)
\(A\ge\dfrac{\left(x+y\right)^2}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)
\(A\ge\dfrac{7\left(x+y\right)^2}{16xy}+\dfrac{\left(x+y\right)^2}{16xy}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}\)
\(A\ge\dfrac{7.4xy}{16xy}+3\sqrt[3]{\dfrac{\left(x+y\right)^2xy}{16.4.xy\left(x+y\right)^2}}=\dfrac{5}{2}\)
Dấu "=" xảy ra khi \(x=y\)
Cho x-y=2. Tìm GTNN của: a) P=xy +4 b) Q=x^2 +y^2-xy
Tìm GTNN của A = x^3 + y^3 + xy biết x+ y =1 B= (x-1)^2 +(x-3)^2
\(A=\left(x^3+y^3+xy\left(x+y\right)\right)-xy\left(x+y\right)+xy\)
=> \(A=\left(x+y\right)\left(x^2+y^2\right)-xy.1+xy\)
=> \(A=x^2+y^2-xy+xy\)
=> \(A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1^2}{2}=\frac{1}{2}\)
DẤU "=" XẢY RA <=> \(x=y\). MÀ \(x+y=1\)
=> A min \(=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\).
\(B=x^2-2x+1+x^2-6x+9\)
=> \(B=2x^2-8x+10\)
=> \(B=2\left(x^2-4x+4\right)+2\)
=> \(B=2\left(x-2\right)^2+2\)
CÓ: \(2\left(x-2\right)^2\ge0\forall x\Rightarrow2\left(x-2\right)^2+2\ge2\)
=> \(B\ge2\)
DẤU "=" XẢY RA <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
VẬY B MIN = 2 <=> \(x=2\)
Đề bài : Tìm x , y thuộc Z , biết :a) xy + x + 2y = 5b) xy - 3x - y = 0c)xy +2x +2y = -16
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
Tìm GTNN của A = \(x-\sqrt{xy}+\frac{7y}{12}+\frac{\sqrt{y}}{6}-\frac{8}{3}+\frac{9}{16\sqrt{x}}\)
Tìm gtnn của |x+y| biết xy=1
Tớ chỉ muốn nói tớ cũng là BLINK <3
kb nhé!!!
Tìm GTNN của biểu thức : \(S=\frac{1}{x^4}+\frac{1}{16.y^4}\)
Biết xy=1
Lời giải:
$S=\frac{x^4+16y^4}{16x^4y^4}=\frac{x^4+16y^4}{16}$
Áp dụng BĐT Cô-si:
$x^4+16y^4\geq 2\sqrt{16x^4y^4}=8$
$\Rightarrow S\geq \frac{8}{16}=\frac{1}{2}$
Vậy GTNN của $S$ là $\frac{1}{2}$
Giá trị này đạt tại $x^4=16y^4; xy=1$
$\Rightarrow (x,y)=(\pm \sqrt{2}, \pm \frac{1}{\sqrt{2}})$
cho x, y là 2 số dương và x+ y= 16. Tìm GTNN của M= (9/xy) + 17/ (x2+ y2)
M=9/xy+17/(x^2+y^2)=17/(x^2+y^2)+17/2xy+1/2xy=17.(1/x^2+y^2 + 1/2xy) + 1/2xy
Áp dụng bđt cauchy dạng 1/a+1/b >/ 4/(a+b) và ab </ [(a+b)/2]^2
Ta có M >/ 17.4/16^2 + 1/2.8^2 = 35/128=>minM=35/128
Đẳng thức xảy ra <=> x=y=8