tìm a ∈ Z để x ∈ Z
a, x=\(\frac{2}{2a+1}\)
b, x=\(\frac{3-a}{a}\)
c, x=\(\frac{a-2}{2a}\)
1. \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) Cmr: \(\frac{x^2}{\left(x+1\right)^2}+\frac{y^2}{\left(y+1\right)^2}+\frac{z^2}{\left(z+1\right)^2}\ge\frac{3}{4}\)\
2. \(a,b,c>0.\) cmr: \(\Sigma\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\le\frac{1}{a+b+c}\)
Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Câu 2:
\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)
Tương tự, cộng lại và rút gọn sẽ có đpcm
Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,
tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,
@Akai Haruma
giúp e vs ạ! thanks trước
CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)
CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)
ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)
\(\Rightarrow x^2+y^2+z^2\ge1\)
\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)
TA CÓ:
\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:
\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}}
\)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)
DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)
tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á
1) Tìm x biết : a) \(a^2x+x=2a^2-3\) ; b) \(a^2x+3ax+9=a^2\left(a\ne0;a\ne-3\right)\)
2) Cho a + b + c = 3,rút gọn biểu thức \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}\)
3) Chứng minh rằng nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1;x=y+z\)thì \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
b. Sử dụng các hằng đẳng thức
\(a^3+b^3+c^2-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=3\left(a^2+b^2+c^2-ab-bc-ca\right)\)
và \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
nên \(A=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{1}{2}.\frac{\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Do (a - b) + (b - c) + (c - a) = 0 nên áp dụng hđt \(X^2+Y^2+Z^2=-2\left(XY+YZ+ZX\right)\)khi X + Y + Z = 0, ta có:
\(A=-2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right).\)
Bài 1 :
\(b,ax^2+3ax+9=a^2\)
\(\Leftrightarrow a^2x+3ax+9-a^2=0\)
\(\Leftrightarrow ax\left(a+3\right)+\left(a+3\right)\left(3-a\right)=0\)
\(\Leftrightarrow\left(a+3\right)\left(ax+3-a\right)=0\)
Vì \(a\ne3\Rightarrow\left(a+3\right)\ne0\Rightarrow ax+3-a=0\)
\(\Leftrightarrow ax=a-3\)
Vì \(a\ne0\Rightarrow x=\frac{a-3}{a}\)
c.Ta có \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xz}-\frac{2}{xy}+\frac{2}{yz}=1\)
Do x = y + z nên \(\frac{-2}{xz}-\frac{2}{xy}+\frac{2}{yz}=\frac{-2y-2z+2\left(y+z\right)}{\left(y+z\right)zy}=0\)
Vậy nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1.\)
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)
Bài 2 :
Ta có :
\(2a^2+16ab+7b^2=\left(2a+3b\right)^2-2\left(a-b\right)^2\le\left(2a+3b\right)^2\)
\(\Rightarrow P\ge\frac{25a^2}{2a+3b}+\frac{25b^2}{2b+3c}+\frac{c^2\left(a+3\right)}{a}\)
Áp dụng BĐT Cô - si ta có :
\(\frac{25a^2}{2a+3b}+2a+3b\ge10a\)
\(\frac{25b^2}{2b+3c}+2b+3c\ge10b\)
\(\frac{c^2\left(a+3\right)}{a}=\left(c^2+1\right)+\left(\frac{3c^2}{a}+3a\right)-3a-1\ge2c+6c-3a-1=8c-3a-1\)
Khi đó :
\(P\ge\left(10-2a-3b\right)+\left(10b-2b-3c\right)+\left(8c-3a-1\right)\)
\(\Rightarrow P\ge5\left(a+b+c\right)-1=14\)
Vậy \(MinP=14\) khi a=b=c=1
1/ Cho biểu thức \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
a)Tìm các giá trị của x để A<-1
b) Tìm các giá trị của \(x\in Z\) sao cho \(2A\in Z\)
2/ Cho \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)tìm các giá trị của x để A>-6
a) cho x,y,z>0 sao cho xyz=1. CMR \(\frac{x^4y}{x^2+1}+\frac{y^4z}{^{y^2+1}}+\frac{z^4x}{^{z^2+1}}\ge\frac{3}{2}\)
b) cho a,b,c,d>0 sao cho a+b+c+d=4. CMR \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2d}\ge2\)
1, cho a,b,c là các số dương chứng minh rằng\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(2a+c\right)}\)
2, cho x,y,z thuộc R và x+y+z=5 và xy +yz+xz=8 chứng minh răng \(1\le x\le\frac{7}{3}\)
1) Cho x,y,z>0. CMR:
\(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}>2\)
2) Cho a,b,c>0. Tìm Min
\(P=\frac{\sqrt{ab}}{a+b+2c}+\frac{\sqrt{bc}}{b+c+2a}+\frac{\sqrt{ac}}{a+c+2b}\)
Theo BĐT Cô - si:
\(\sqrt{\frac{y+z}{x}.1}\le\left(\frac{y+z}{x}+1\right):2=\frac{x+y+z}{2x}\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\). Bạn làm tương tự và cộng từng vế sau đó CM không xảy ra dấu bằng
\(Cho:\frac{2y+2z-x}{a}=\frac{2z+2x-y}{b}=\frac{2x+2y-z}{c};trongđó:a,b,c,2b+2c-a,2c+2a-b,2a+2b-c\ne0.cmr:\frac{x}{2b+2c-a}=\frac{y}{2c+2a-b}=\frac{z}{2a+2b-c}\)