Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
NM
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
QB
Xem chi tiết
NT
24 tháng 8 2021 lúc 21:14

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

Bình luận (0)
HA
Xem chi tiết
NM
18 tháng 10 2021 lúc 8:29

B3:

Áp dụng t/c dtsbn: 

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

B4:

Áp dụng t/c dtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{b}{a+b}=\dfrac{d}{c+d}\)

Bình luận (0)
HA
18 tháng 10 2021 lúc 8:44

cm ơn các bn nhìu

 

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
LM
Xem chi tiết
KR
14 tháng 6 2017 lúc 10:23

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

Bình luận (0)
NT
Xem chi tiết
TT
16 tháng 8 2016 lúc 21:14

+ CM a/b < a+c/b+c

Ta có: a/b < c/d => ad < bc ( Vì b> 0; d > 0)

                         => ad + ab < bc + ab

                         => a(d+b) < b(a+c) 

                         => a/b < a+c/b+c ( Điều phải CM) (1)

+CM a+c/b+c < c/d

Ta có : a/b < c/d => ad < bc 

                          => ad + cd < bc + cd

                          => d(a+c) < c(d+b)

                          => c/d > a+c /b+d ( Điều phải CM) ( 2)

Từ (1) và (2) => a/b < a+c/b+c < c/d ( Với a/b < c/d)

Bình luận (0)
LH
16 tháng 8 2016 lúc 21:09

 

Bình luận (0)
LH
16 tháng 8 2016 lúc 21:10

hơi xấu nha

Bình luận (1)