Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
MY
28 tháng 11 2021 lúc 22:28

\(\left\{{}\begin{matrix}x^2+2x-2y^2=0\\y^2+2y-2x^2=0\end{matrix}\right.\)\(\left(1\right)-\left(2\right)\Rightarrow x^2+2x-2y^2-y^2-2y+2x^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x+3y+2\right)=0\Leftrightarrow\left(x-y\right)3\left(x+y+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y+\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y\left(2\right)\\x=-\dfrac{2}{3}-y\left(3\right)\end{matrix}\right.\)

\(thế\left(2\right)và\left(3\right)lên-hệ-pt-rồi-giải\)

 

 

 

 

 

Bình luận (0)
PH
Xem chi tiết
AH
18 tháng 3 2021 lúc 2:02

Lời giải:

PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$

$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$

Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$

$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$

$\Leftrightarrow x-5\vdots x^2+2(1)$

$\Rightarrow x^2-5x\vdots x^2+2$

$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$

$\Leftrightarrow 5x+2\vdots x^2+2(2)$

Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$

$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:

$\Rightarrow x^2+2\in\left\{3;9;27\right\}$

$\Rightarrow x^2\in\left\{1;7;25\right\}$

Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$

Thay vào $y$ ta tìm được: 

$x=-1\Rightarrow y=-3$

$x=5\Rightarrow y=5$

Bình luận (0)
VT
Xem chi tiết
NT
23 tháng 5 2023 lúc 7:27

x^3+2y^2-4y+3=0

=>x^3=-1-2(y-1)^2<=-1

=>x<=-1

x^2+x^2y^2-2y=0

=>x^2=2y/1+y^2<=1

=>-1<=x<=1

=>x=-1

=>y=1

Bình luận (0)
NT
Xem chi tiết
NA
Xem chi tiết
KK
6 tháng 9 2021 lúc 16:26

a. = 2xy + 2x2 - 4xy2 - 2

Bình luận (0)
NA
6 tháng 9 2021 lúc 18:20

a,  2xy +2x2 - 4xy- 2     ;    b, -3x2y -2x2y + y       ;          c, 3x3 - 2y - 3

Bình luận (0)
UK
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết
LT
22 tháng 12 2017 lúc 20:48

\(\hept{\begin{cases}x^3+2y^2-4y+3=0\\x^2+x^2y^2-2y=0\end{cases}}\)

\(x^3+2y^2-4y+3=0\Leftrightarrow x^2+2\left(y^2-2+1\right)+1=0\Leftrightarrow\left(y-1\right)^2=\frac{-1-x^3}{2}\)

\(\Rightarrow\frac{-1-x^3}{2}\ge0\Leftrightarrow x\ge-1\)

Để có nghiệm thì \(\Delta_y=4-4x^4\ge0\Leftrightarrow-1\le x\le1\)

Kết hợp với trên, ta có: x = -1, thế vào PT ban đầu, tính được y = 1

Vậy hệ của nghiệm là: \(\left(x,y\right)=\left(-1;1\right)\)

Bình luận (0)
DD
29 tháng 1 2018 lúc 12:26

Trong OLM,số người học lớp 9 chơi phần mềm này rất ít!!Anh có thể vào Học24h để hỏi,ở đó còn có rất nhiều thầy cô giáo sẽ giúp anh!!

Bình luận (0)
KT
28 tháng 4 2019 lúc 13:59

anh nham roi co the bon em se giup ah ma...

em ko cao sieu nhung van giup dc phan nho nho 

Bình luận (0)
NH
Xem chi tiết
H24
27 tháng 9 2019 lúc 19:36

Lấy pt thứ nhất của hệ - pt thứ 2 thu được:

\(x^2y^2+2x^2y-xy-6x^2=0\)

\(\Leftrightarrow x\left(xy^2+2xy-y-6x\right)=0\)

Suy ra \(x=0\text{ hoặc }xy^2+2xy-y-6x=0\)

Thay x = 0 vào 1 trong 2 pt ta thấy ko tm(loại)

Nếu \(xy^2+2xy-y-6x=0\Leftrightarrow x\left(y^2+2y-6\right)=y\)

\(x=\frac{y}{y^2+2y-6}\)

Giờ chắc là thay vào 1 trong 2 pt rồi quy đồng thôi:v Chị check lại xem mấy bước trên đúng ko? nếu đúng thì quy đồng chắc chắn ra (mặc dù khá mệt:v)

Bình luận (1)