Những câu hỏi liên quan
PA
Xem chi tiết
NT
21 tháng 11 2023 lúc 17:57

1: y=(m+5)x+2m-10

=>(m+5)x-y+2m-10=0

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m+5\right)+0\cdot\left(-1\right)+2m-10\right|}{\sqrt{\left(m+5\right)^2+\left(-1\right)^2}}=\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}\)

Để d(O;(d))=1 thì \(\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}=1\)

=>\(\sqrt{\left(m+5\right)^2+1}=\left|2m-10\right|=\sqrt{4m^2-40m+100}\)

=>\(4m^2-40m+100=m^2+10m+26\)

=>\(3m^2-50m+74=0\)

=>\(m=\dfrac{25\pm\sqrt{403}}{3}\)

2: Gọi A,B lần lượt là tọa độ giao điểm của (d) với trục Ox,Oy

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x+2m-10=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x=-2m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-2m+10}{m+5}\end{matrix}\right.\)

=>\(OA=\left|\dfrac{-2m+10}{m+5}\right|=\left|\dfrac{2m-10}{m+5}\right|\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+5\right)x+2m-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=0\cdot\left(m+5\right)+2m-10=2m-10\end{matrix}\right.\)

=>OB=|2m-10|

ΔOAB vuông tại O

=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left|2m-10\right|}{\left|m+5\right|}\cdot\left|2m-10\right|\)

\(=\dfrac{\left|\left(m-5\right)\left(2m-10\right)\right|}{\left|m+5\right|}=\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|\)

\(S=3\) khi \(\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|=3\)

=>\(\left[{}\begin{matrix}\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=3\\\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-10m-10m+50=3m+15\\2m^2-20m+50=-3m-15\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-20m+50-3m-15=0\\2m^2-20m+50+3m+15=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2m^2-23m+35=0\\2m^2-17m+65=0\end{matrix}\right.\)

=>\(m\in\left\{\dfrac{23\pm\sqrt{249}}{4}\right\}\)

Bình luận (0)
HP
Xem chi tiết
LL
15 tháng 10 2021 lúc 13:37

Ta có: MN là đường kính \(\left(O;R\right)\)

\(\Rightarrow R=OM=\dfrac{1}{2}MN=\dfrac{1}{2}.6=3\left(cm\right)\)

 

Bình luận (5)
HG
Xem chi tiết
H24
Xem chi tiết
NN
3 tháng 4 2022 lúc 15:32

thiếu đề  bn ơi

Bình luận (1)
H24
3 tháng 4 2022 lúc 15:32

thiếu đề

Bình luận (0)
H24
3 tháng 4 2022 lúc 15:35

Mình đã chỉnh sửa lại r 

 

Bình luận (0)
DP
Xem chi tiết
NT
16 tháng 1 2023 lúc 20:29

a: ĐKXĐ: x>0; x<>9

b: \(A=\dfrac{x+3\sqrt{x}+x-3\sqrt{x}}{x-9}:\dfrac{\sqrt{x}+3-3}{\sqrt{x}+3}\)

\(=\dfrac{2x}{x-9}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

c: Để A=-1 thì 2 căn x=-căn x+3

=>x=1

Bình luận (0)
NM
Xem chi tiết
LH
27 tháng 6 2021 lúc 16:39

Áp dụng AM-GM có:

\(2a^2+2b^2\ge4ab\)

\(8b^2+\dfrac{1}{2}c^2\ge4bc\)

\(8a^2+\dfrac{1}{2}c^2\ge4ac\)

Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)

Bình luận (0)
AL
Xem chi tiết
GH
22 tháng 8 2023 lúc 21:16

A=20062007+20072008+20082009=1−12007+1−12008+1−12009�=20062007+20072008+20082009=1−12007+1−12008+1−12009

=3−12007−12008−12009

Bình luận (1)
GH
22 tháng 8 2023 lúc 21:17

Lỗi rồi bạn oi, đừng chép nhé

Bình luận (0)
AC
Xem chi tiết
H24
17 tháng 4 2022 lúc 9:50

A C B M N D

a, Áp dụng Đ. L. py-ta-go vào tg ABC cân tại A, có:

BC2=AC2+AB2

=>152=AC2+92

     225=AC2+81

=>AC=225-81

         =144.

=>AC=12cm.

b, Xét tg ABM và tg NCM, có: 

MB=MC(M là trung điển của BC)

góc AMB= góc CMN(đối đỉnh)

AM=NM(gt)

=>tg ABM= tg NCM(c. g. c)

=>góc ABM= góc NCM(2 góc tương ứng)

c, Ta có: góc BAC+ góc DAC=180o

                 =>góc DAC= 180o- góc BAC 

                                   =180o-90o

                                   =90o

Xét tg ACB và tg ACD, có: 

AB=AD(A là trung điểm của BC)

góc BAC = góc DAC(=90o)

AC chung

=>tg ABC= tg ADC(2 cạnh góc vuông)

=>BC=DC(2 cạnh tương ứng)

=>tg CBD cân tại C(đpcm)

Bình luận (0)
DA
Xem chi tiết
QM
Xem chi tiết
NT
7 tháng 10 2021 lúc 23:19

a: Ta có: AE+EB=AB

CF+FD=CD

mà AB=CD

và AE=CF

nên EB=FD

Ta có: AM+MD=AD

CN+NB=CB

mà AD=CB

và AM=CN

nên MD=NB

Xét ΔAME và ΔCNF có 

AM=CN

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔAME=ΔCNF

Suy ra: ME=NF

Xét ΔEBN và ΔFDM có 

BE=DF

\(\widehat{B}=\widehat{D}\)

BN=DM

Do đó: ΔEBN=ΔFDM

Suy ra: EN=FM

Xét tứ giác EMFN có

EN=MF

EM=NF

Do đó: EMFN là hình bình hành

Bình luận (0)