Những câu hỏi liên quan
H24
Xem chi tiết
LL
7 tháng 2 2019 lúc 14:17

có tồn tại

Bình luận (0)
ND
7 tháng 2 2019 lúc 20:51

A B C O H M N P D E F

Gọi giao điểm thứ hai của AH,BH,CH với đường tròn (O) thứ tự là D,E,F. Gọi OD cắt BC tại M, OE cắt CA tại N, OF cắt AB tại P.

Ta sẽ chứng minh 3 điểm M,N,P nói trên thỏa mãn đồng thời 2 điều kiện của đề:

+) ĐK 1: MH + MO = NH + NO = PH + PO

Ta có: ^BDH = ^BDA = ^BCA = ^BHD => \(\Delta\)HBD cân tại B => BH = BD. Tương tự: CH = CD

Do đó: BC là trung trực của HD. Vì M thuộc BC nên MH = MD => MH + MO = MD + MO = OD = R

Chứng minh tương tự ta được: MH + NO = NH + NO = PH + PO = R (R là bán kính đường tròn (O)) (Thỏa mãn)

+) ĐK 2: AM,BN,CP đồng quy (Đặt 1800 - 2.^BAC = \(\alpha\); 1800 - 2.^ABC = \(\beta\); 1800 - 2.^ACB = \(\gamma\))

Đường tròn (O) có: ^BOD và ^BAD là góc ở tâm và góc nội tiếp cùng chắn (BD => ^BOD = 2.^BAD

Hay ^BOM = 2.(900 - ^ABC) = 1800 - 2.^ABC. Tương tự: ^COM = 1800 - 2.^ACB

Áp dụng ĐL hàm Sin: \(\frac{BM}{CM}=\frac{\sin\widehat{BOM}}{\sin\widehat{COM}}=\frac{\sin\beta}{\sin\gamma}\)Tương tự: \(\frac{AP}{BP}=\frac{\sin\alpha}{\sin\beta};\frac{CN}{AN}=\frac{\sin\gamma}{\sin\alpha}\)

Từ đó: \(\frac{AP}{BP}.\frac{BM}{CM}.\frac{CN}{AN}=\frac{\sin\alpha}{\sin\beta}.\frac{\sin\beta}{\sin\gamma}.\frac{\sin\gamma}{\sin\alpha}=1\)

Theo điều kiện đủ của ĐL Céva thì 3 đường thẳng AM,BN,CP đồng quy (Thỏa mãn)

Vậy nên tồn tại 3 điểm M,N,P là 3 điểm thỏa mãn bài.

Bình luận (0)
TL
Xem chi tiết
BB
Xem chi tiết
TR
Xem chi tiết
TH
3 tháng 3 2022 lúc 17:46

\(\dfrac{AE}{EM}=\dfrac{S_{AEC}}{S_{MEC}}=\dfrac{S_{AEB}}{S_{MEB}}=\dfrac{S_{AEC}+S_{AEB}}{S_{BEC}}\)

\(\dfrac{AN}{BN}=\dfrac{S_{AEN}}{S_{CEN}}=\dfrac{S_{ABN}}{S_{CBN}}=\dfrac{S_{ABN}-S_{AEN}}{S_{CBN}-S_{CEN}}=\dfrac{S_{AEB}}{S_{BEC}}\)

\(\dfrac{AP}{BP}=\dfrac{S_{AEP}}{S_{BEP}}=\dfrac{S_{ACP}}{S_{BCP}}=\dfrac{S_{ACP}-S_{AEP}}{S_{BCP}-S_{BEP}}=\dfrac{S_{ACE}}{S_{BEC}}\)

\(\Rightarrow\dfrac{AN}{BN}+\dfrac{AP}{BP}=\dfrac{S_{AEB}+S_{ACE}}{S_{BEC}}=\dfrac{AE}{EM}\)

 

Bình luận (0)
LN
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
DT
Xem chi tiết
N3
Xem chi tiết