Những câu hỏi liên quan
LL
Xem chi tiết
AT
4 tháng 7 2021 lúc 16:14

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1+1}}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x\ge2\right)=2\sqrt{x-1}\)

a) \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

c) \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}=\dfrac{7}{2\sqrt{5}-\sqrt{3}}=\dfrac{7\left(2\sqrt{5}+\sqrt{3}\right)}{\left(2\sqrt{5}+\sqrt{3}\right)\left(2\sqrt{5}-\sqrt{3}\right)}\)

\(=\dfrac{14\sqrt{5}+7\sqrt{3}}{17}\)

 

 

Bình luận (0)
AN
Xem chi tiết
NH
2 tháng 6 2020 lúc 21:36

a)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\frac{\sqrt{5}\left(\sqrt{5-1}\right)}{\sqrt{5}-1}\)

=\(3-\sqrt{5}+\sqrt{5}=3\)

Bình luận (0)
NH
2 tháng 6 2020 lúc 21:37

ý a con phân số mk rút gọn ấy nhé tử và mẫu \(\sqrt{5}-1\)

Bình luận (0)
HO
Xem chi tiết
TD
Xem chi tiết
NH
1 tháng 5 2022 lúc 17:13

1, vt : \(\left(1-\dfrac{5+\sqrt{2}}{\sqrt{2}+1}\right).\sqrt{3+2\sqrt{2}}\)

=\(\dfrac{\sqrt{2}+1-5-\sqrt{2}}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\)

=\(\dfrac{-4}{\sqrt{2}+1}.\sqrt{\left(\sqrt{2}+1\right)^2}\)

=\(\dfrac{-4\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

=-4

2, A=\(\left(\dfrac{\sqrt{x}}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right)\div\dfrac{2}{x+\sqrt{x}-2}\)

=\(\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\left(\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

=\(\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{2}\)

=\(\dfrac{-\sqrt{x}-2}{\sqrt{x}+1}\)

Bình luận (0)
DH
1 tháng 5 2022 lúc 20:40

1. (1−5+√2√2+1)⋅√3+2√2=−4√2+1√(√2+1)2=−4(1−5+22+1)⋅3+22=−42+1(2+1)2=−4.

2. Với x>0;x≠1x>0;x≠1 ta có:
A=(√xx+√x−1√x−1):2x+√x−2A=(xx+x−1x−1):2x+x−2
⇔A=(√x√x(√x+1)−1√x−1):2(√x−1)(√x+2)⇔A=(xx(x+1)−1x−1):2(x−1)(x+2)
⇔A=−2(√x−1)(√x+1)⋅(√x−1)(√x+2)2⇔A=−2(x−1)(x+1)⋅(x−1)(x+2)2
⇔A=−(√x+2)√x+1⇔A=−(x+2)x+1. Vạyy với x>0;x≠1x>0;x≠1, ta có A=−(√x+2)√x+1A=−(x+2)x+1.

Bình luận (0)
YT
Xem chi tiết
QS
Xem chi tiết
NC
10 tháng 6 2019 lúc 18:35

a)\(\sqrt{x}+1>\sqrt{x+1}\) (x>0)

Có:\(\left(\sqrt{x}+1\right)^2=x+2\sqrt{x}+1\left(1\right)\) (x>0)

\(\sqrt{\left(x+1\right)^2}=x+1\) (2) (x>0)

từ (1) và (2) =>(đpcm)

b)\(\sqrt{x^2+1}>x\)

Có:\(\sqrt{\left(x^2+1\right)^2}=x^2+1\left(1\right)\)

x2=x2 (2)

Từ (1) và (2) =>(đpcm)

c)\(\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\left(a,b\ge0\right)\)

Vì a,b >or= 0

=>\(a+b\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow\frac{1}{2}+a+b\ge\sqrt{a}+\sqrt{b}\) (đáng lẽ 1/2+a+b> mới phải)

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)
DV
Xem chi tiết
LL
19 tháng 11 2021 lúc 12:40

Bài 1:

1) \(B=1:\dfrac{\left(x+2\right)\left(\sqrt{x}+1\right)+\left(x-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-\sqrt{x}}=\dfrac{\left(x-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

2) \(VT=\dfrac{\left(6a+1\right)\left(a+6\right)+\left(6a-1\right)\left(a-6\right)}{a\left(a-6\right)\left(a+6\right)}.\dfrac{\left(a-6\right)\left(a+6\right)}{a^2+1}\)

\(=\dfrac{12a^2+12}{a\left(a^2+1\right)}=\dfrac{12\left(a^2+1\right)}{a\left(a^2+1\right)}=\dfrac{12}{a}=VP\)

 

Bình luận (0)
TD
Xem chi tiết
LP
8 tháng 5 2022 lúc 10:25

a) Ta có: \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right)\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left[2-\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}\right]\left[2+\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right]\)\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\) (đpcm)

b) Ta có \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)\(=\left[\dfrac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}\right].\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)\(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

Bình luận (0)
NX
30 tháng 5 2022 lúc 21:12

Ta có đẳng thức : (23+33+1).(2+3331)=1

xét vế trái ta có :(23+33+1).(2+3331)  = 

 

 

 

Bình luận (0)
NK
7 tháng 8 2022 lúc 21:27

a) ta co \(\left(2-\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\right).\left(2+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)=\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)=1\)

b) ta co \(A=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+1}{x-4\sqrt{x}+4}\)

             \(A=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2}\)

             \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)

             \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

Vay \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

             

Bình luận (0)
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 13:28

a, \(\sqrt{\left(\sqrt{5}-4\right)^2}-\sqrt{5}+\sqrt{20}=4\)

\(VT=\sqrt{\left(4-\sqrt{5}\right)^2}-\sqrt{5}+\sqrt{20}=\left|4-\sqrt{5}\right|-\sqrt{5}+\sqrt{20}\)

\(=4-\sqrt{5}-\sqrt{5}+2\sqrt{5}=4\) hay \(VT=VP\)

Vậy ta có đpcm 

b, Với \(x>0,x\ne4\)

\(P=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{2}{x-2\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{2}=\frac{x}{\sqrt{x}+2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HB
25 tháng 4 2021 lúc 13:51

1.

Giả sử điều trên là đúng ta có:

\( \left | \sqrt{5}-4 \right |-\sqrt{5}+\sqrt{20}=4\)

Ta có: \(4>\sqrt{5}\)

\(\Rightarrow 4-\sqrt{5}- \sqrt{5}+\sqrt{20}=4\)

\(\Leftrightarrow 4-\sqrt{20}+\sqrt{20}=4\)

\(\Rightarrow đpcm\)

2.

 

Bình luận (0)
 Khách vãng lai đã xóa
DH
5 tháng 5 2021 lúc 15:09

 \(P=\dfrac{x}{\sqrt{x}+2}\)

Bình luận (0)
 Khách vãng lai đã xóa