Những câu hỏi liên quan
NH
Xem chi tiết
H9
28 tháng 6 2023 lúc 15:40

Bài 11: 

Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)

Vậy: \(a+7\inƯ\left(101\right)\)

\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)

\(a+7\in\left\{101;1;-101;-1\right\}\)

\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)

Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)

Bài 12:

Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)

t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\) 

\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)

\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)

Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)

Bình luận (0)
HL
Xem chi tiết
VX
28 tháng 5 2021 lúc 23:52

undefinedBạn tham khảo nha. Chúc bạn học tốt

Bình luận (0)
TH
29 tháng 5 2021 lúc 7:03

Ta có \(-2< -\dfrac{4}{3}< -1\) nên \(\left[-\dfrac{4}{3}\right]=-2\).

\(0< \dfrac{1}{2}< 1\) nên \(\left[\dfrac{1}{2}\right]=0\).

Bình luận (0)
DH
Xem chi tiết
DH
Xem chi tiết
H24
9 tháng 9 2015 lúc 14:53

phần lẻ là j

phần nguyên là j

Bình luận (0)
NA
14 tháng 8 2018 lúc 8:47

toan nay la tu trong sach nang cao ra.hihi dung minh dang hoc quyen nay hehe

Bình luận (0)
NA
14 tháng 8 2018 lúc 9:00

minh cau 1 nhe.chi biet lam cau day thoi.

a phan nguyen la -3 phan le la 0.b nguyen 6 phan le 0,1.c nguyen la -2 le la 4/5.d 0va1/8.moi nguoi h dung cho minh nha

Bình luận (0)
NT
Xem chi tiết
NN
17 tháng 9 2023 lúc 8:30

a)

Gọi x là số cần tìm, ta có:

 \(x+2>0\left(x>0\right)\)

\(\Rightarrow x-4< 0\)

\(\Rightarrow x< 4\)

\(x=\left\{1;2;3\right\}\)

b)

Gọi x là số cần tìm, khi đó:

\(x-2< 0\left(x< 0\right)\)

\(x+4>0\left(\forall x>-4\right)\)

\(\Rightarrow x=\left(-3;-2;-1\right)\)

Bình luận (0)
NK
Xem chi tiết
NI
12 tháng 8 2021 lúc 22:27

\(a)\)

Để x là số nguyên

\(\Rightarrow\frac{2}{2a+1}\)là số nguyên

\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)

Ta có:

2a+1-2-112
a-3/2-101/2
So sánh điều điện aLoạiTMTMLoại

\(b)\)

Ta có:

\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên

\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)

\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)

\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)

\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)

\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)

Bình luận (0)
 Khách vãng lai đã xóa
PG
Xem chi tiết
NY
6 tháng 10 2015 lúc 21:29
Vì \(0,6=\frac{6}{10}=\frac{3}{5}\)

               \(-1,25=\frac{-125}{100}=\frac{-5}{4}\)

           nên 0,6 và -1,25 là các số hữu tỉ

Số nguyên a là số hữu tỉ vì ta có thể viết a dưới dạng phân số là \(\frac{\alpha}{1}\)Câu c bạn tự vẽ nhasố hữu tỉ dương : \(\frac{2}{3};\frac{-3}{-5}\)

           số hữu tỉ âm : \(\frac{-3}{7};\frac{1}{-5};-4\)

          số không hữu tỉ âm cũng không phải hữu tỉ dương là \(\frac{0}{-2}\)  ( vì kết quả bằng 0 )

 

 

 

 

Bình luận (0)
TL
Xem chi tiết
DB
Xem chi tiết
H24
2 tháng 11 2019 lúc 21:11

Ta có:

\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)

\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)

Từ (1) và (2)

=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 11 2019 lúc 21:23

Vì \(\sqrt{x}\)là một số hữu tỉ

\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)

Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)

\(\Rightarrow a,b\)là những số nguyên dương (1)

Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)

Vì \(\frac{a}{b}\)là phân số tối giản

\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(a,b)=1

Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)

\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1

\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)

Từ (1), (2) và (3)

=>đpcm

Bình luận (0)
 Khách vãng lai đã xóa