Cho các số x, y\(\ne\)0. CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3(\frac{x}{y}+\frac{y}{x})\)
cho hai số thực x, y\(\ne\)0.CMR:\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Bđt tương đương:
\(\frac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\frac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\left(x-y\right)^2\left[\frac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\frac{x^2+y^2-xy}{x^2y^2}\right]\ge0\)(luôn đúng do \(x,y\ne0\))
Đặt \(\frac{x}{y}+\frac{y}{x}=a\)
\(\Rightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2=a^2\)
\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+2=a^2\)
Dễ dàng chứng minh được: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\)nên \(a^2\ge4\)\(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\left(1\right)\)
Ta thấy: bđt tương đương với \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a\ge2\\a\le1\end{cases}}\left(2\right)\)
Từ (1) suy ra (2) . Vậy bài toán được chứng minh
vid x,y là số thực nên ko dùng đc bđt \(\frac{x}{y}+\frac{y}{x}\ge2\)
Cho x, y>0. CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\frac{x^4+y^4+4x^2y^2}{x^2y^2}\ge\frac{3x^3y+3y^3x}{x^2y^2}\)
\(\Leftrightarrow x^4+y^4+4x^2y^2-3x^3y-3xy^3\ge0\)
\(\Leftrightarrow x^2\left(x^2-2xy+y^2\right)+y^2\left(x^2-2xy+y^2\right)-x^3y-xy^3+2x^2y^2\ge0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x^2-2xy+y^2\right)-xy\left(x^2+y^2-2xy\right)\ge0\Leftrightarrow\left(x^2-xy+y^2\right)\left(x-y\right)^2\ge0\)(đúng)
\(\Rightarrowđpcm."="\Leftrightarrow x=y\)
chứng minh bất đẳng thức sau đây đúng với x,y là các số thực bất kì khác không: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge 3\left(\frac{x}{y}+\frac{y}{x}\right)\) <=>\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4 - 3\left(\frac{x}{y}+\frac{y}{x}\right)\ge0\)
Vì \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge 2\)
và \(\left(\frac{x}{y}+\frac{y}{x}\right)\ge 2\)
nên BĐT tương đương 2+ 4- 3x2 \(\ge 0\)
<=> 0\(\ge 0\)
Dấu = xảy ra khi x=y
Đặt \(\frac{x}{y}+\frac{y}{x}=a\) ta có \(lal=l\frac{x}{y}+\frac{y}{x}l=l\frac{x}{y}l+l\frac{y}{x}l\ge2\) ( cô - si )
=> \(a\ge2ora\le-2\)
BĐT <=> \(a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\ge2\) => \(a-1>a-2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)
(+) với \(a\le-2\Rightarrow a-2\le0;a-1\le0\Rightarrow\left(a-2\right)\left(a-1\right)\ge0\)
Vậy BĐT trên luôn đúng
CMR: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
1) Cho x,y >0 và \(x^4+y^4=2\) CMR \(\frac{x^2}{y}+\frac{y^2}{x}\ge2\)
2) Cho x,y,z và \(x^2+y^2+z^2=3 \) CMR \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge3\)
m.n giúp mình vs ạ ,cảm ơn nhìu
CMR bất đẳng thức sau đúng với mọi x;y là các số thực bất kì khác 0 :
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right) \Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)(1)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\), (1) trở thành \(t^2-3t+2\ge0\)(2)
(2) đúng khi \(t\le1\)hoặc \(t\ge2\), chú ý rằng theo bất đẳng thức AM - GM, ta có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{xy}{xy}}=2\)với x,y > 0
Do đó (2) đúng, suy ra (1) đúng ( đpcm ).
Đề đúng không thế bạn. 3 hay là 2 thế
Cho x,y thuộc R, x, y khác 0. CMR: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
https://diendantoanhoc.net/topic/140802-cmrfrac4x2y2x2y22fracx2y2fracy2x2geq-3/
1, Cho x,y>0.Cmr :\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
2, Tìm giá trị nhỏ nhất của biểu thức :B=\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045\)
Cho x,y > 0. Chứng minh rằng: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))