Những câu hỏi liên quan
CA
Xem chi tiết
CA
Xem chi tiết
H24
8 tháng 7 2019 lúc 21:33

\(A=\sqrt{2x^2-4x+3}+3\)

Ta có: \(2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)

\(=2[\left(x-1\right)^2+\frac{1}{2}]\)

\(=2\left(x-1\right)^2+1\ge1\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)

\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)

\(\Rightarrow MinA=4\Leftrightarrow x=1\)

Bình luận (0)
VT
Xem chi tiết
PL
16 tháng 5 2018 lúc 13:05

Bạn ơi , có sai đề ko z ?

Bình luận (0)
DN
24 tháng 7 2018 lúc 22:17

Ta co :

\(B=y^2-2y\left(1-y\right)+1-2y+y^2+y^2-8y+16+x^2+2x+1+2002\)

B=\(\left(y-1+y\right)^2+\left(y-4\right)^2+(x+1)^2+2002\)

Vi \(\left(2y-1\right)^2;\left(y-4\right)^2;\left(x+1\right)^2\) luon lon hon hoac bang 0 nen

ta co : minB=2002

Bình luận (0)
TL
Xem chi tiết
MS
Xem chi tiết
DT
5 tháng 8 2017 lúc 16:01

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

Bình luận (0)
TL
Xem chi tiết
NT
Xem chi tiết
TL
11 tháng 6 2018 lúc 13:53

\(M=\sqrt{x^2+y^2-2xy+2x-2y+10}+2y^2-8y+2024\\ =\sqrt{\left(x^2+y^2+1-2xy+2x-2y\right)+9}+\left(2y^2-8y+8\right)+2016\\ =\sqrt{\left(x-y+1\right)^2+9}+2\left(y^2-4y+4\right)+2016\\ =\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2016\) \(\text{Do }\left(x-y+1\right)^2\ge0\forall x;y\\ \Rightarrow\left(x-y+1\right)^2+9\ge9\forall x;y\\ \Rightarrow\sqrt{\left(x-y+1\right)^2+9}\ge3\forall x;y\\ Mà\text{ }2\left(y-2\right)^2\ge0\forall y\\ \Rightarrow\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2\ge3\forall x;y\\ M=\sqrt{\left(x-y+1\right)^2+9}+2\left(y-2\right)^2+2016\ge2019\forall x;y\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2\left(y-2\right)^2=0\\\left(x-y+1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=0\\x-y+1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)

Vậy \(M_{Min}=2019\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Bình luận (0)
TL
11 tháng 6 2018 lúc 14:05

\(Q=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\\ =\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-3\right)^2}\\ =\left|5x-2\right|+\left|5x-3\right|\\ =\left|5x-2\right|+\left|3-5x\right|\)

Áp dụng BDT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow\left|5x-2\right|+\left|3-5x\right|\ge\left|5x-2+3-5x\right|=\left|1\right|=1\)

Dấu "=" xảy ra khi:

\(\left(5x-2\right)\left(3-5x\right)\ge0\\\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x-2\ge0\\3-5x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5x-2\le0\\3-5x\le0\end{matrix}\right.\end{matrix}\right. \) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x\ge2\\5x\le3\end{matrix}\right.\\\left\{{}\begin{matrix}5x\le2\\5x\ge3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{2}{5}\\x\le\dfrac{3}{5}\end{matrix}\right.\left(T/m\right)\\\left\{{}\begin{matrix}x\le\dfrac{2}{5}\\x\ge\dfrac{3}{5}\end{matrix}\right.\left(K^0\text{ }T/m\right)\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2}{5}\le x\le\dfrac{3}{5}\)

Vậy \(Q_{Min}=1\) khi \(\dfrac{2}{5}\le x\le\dfrac{3}{5}\)

Bình luận (0)
NH
Xem chi tiết
CD
7 tháng 3 2019 lúc 13:33

\(\sqrt{x+2}+x^3=y^3+\sqrt{y+2}\)

nếu x>y =>vt>vp

nếu x<y => vt<vp

nếu x=y => VT=VP

=> x=y

ta có\(M=-x^2+2x+2015=-\left(x-1\right)^2+2016\)

=>M max=2016<=>x=y=1

Bình luận (0)
PP
Xem chi tiết
PQ
28 tháng 9 2018 lúc 21:05

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
28 tháng 9 2018 lúc 21:09

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 

Bình luận (0)