Những câu hỏi liên quan
H24
Xem chi tiết
MN
8 tháng 8 2020 lúc 11:44

a) Sửa đề :

\(x^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

\(x^4=\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2+3ab^3+b^4\right)\)

\(x^4=a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^4=\left(a+b\right)\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^4=\left(a+b\right)\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^4=\left(a+b\right)^2\left(a+2ab+b^2\right)\)

\(x^4=\left(a+b\right)^4\)

b) Sửa đề:

 \(x^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)

\(x^5=\left(a^5+4a^4b+6a^3b^2+4a^2b^3+ab^4\right)+\left(a^4b+4a^3b^2+6a^2b+4ab^4+b^5\right)\)

\(x^5=a\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)+b\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left(a^4+4a^3b+6a^2b^2+4ab^3+b^4\right)\)

\(x^5=\left(a+b\right)\left[\left(a^4+3a^3b+3a^2b^2+ab^3\right)+\left(a^3b+3a^2b^2++3ab^3+b^4\right)\right]\)

\(x^5=\left(a+b\right)\left[a\left(a^3+3a^2b+3ab^2+b^3\right)+b\left(a^3+3a^2b+3ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left(a^3+3a^2b+3ab^2+b^3\right)\)

\(x^5=\left(a+b\right)^2\left[\left(a^3+2a^2b+ab^2\right)+\left(a^2b+2ab^2+b^3\right)\right]\)

\(x^5=\left(a+b\right)^2\left[a\left(a^2+2ab+b^2\right)+b\left(a^2+2ab+b^2\right)\right]\)

\(x^5=\left(a+b\right)^3\left(a^2+2ab+b^2\right)\)

\(x^5=\left(a+b\right)^5\)

Bạn có thể tự tóm tắt lại

Bình luận (0)
 Khách vãng lai đã xóa
QA
Xem chi tiết
PD
4 tháng 8 2015 lúc 21:19

  a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

Bình luận (0)
PL
Xem chi tiết
DD
3 tháng 9 2016 lúc 21:40

\(1.VP\)

\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)

\(=a^2+b^2=VT\left(DPCM\right)\)

Bình luận (0)
LA
3 tháng 9 2016 lúc 21:49

1/  (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2

2/  (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4

Bình luận (0)
LH
3 tháng 9 2016 lúc 23:01

rảnh ko, tự phân tích hết cái đống hổ lốn lộn xộn ra là làm được, đăng lên làm j, c ko phải ng lp 8, tối đoán thế, tự phân tích, triệt tiêu đi, là ra vế trái, đơn giản, lằng nhằng lôi thôi lếch thếch nhưng nó hợp vs cái ng như c đấy

Bình luận (0)
QA
Xem chi tiết
ML
9 tháng 8 2015 lúc 20:19

a) 

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)

\(=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

b/

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)

\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)

\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)

\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)

\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)

\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)

\(=a^4+b^4+c^4+0\)

\(=a^4+b^4+c^4\)

Bình luận (0)
H24
Xem chi tiết
EC
9 tháng 8 2021 lúc 12:38

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

Bình luận (0)
EC
9 tháng 8 2021 lúc 12:38

Ta có:(a2+ab+b2)(a2-ab+b2)-(a4+b4)

    =   (a2+b2)2-a2b2-a4-b4=a4+2a2b2+b4-a2b2-a4-b4=a2b2

Bình luận (0)
HH
Xem chi tiết
NT
14 tháng 7 2023 lúc 23:19

a: (a+b+c)^2+a^2+b^2+c^2

=a^2+b^2+c^2+a^2+b^2+c^2+2ab+2ac+2bc

=(a^2+2ab+b^2)+(b^2+2bc+c^2)+(a^2+2ac+c^2)

=(a+b)^2+(b+c)^2+(c+a)^2

b: (x+y)^4-2(x^2+xy+y^2)^2

=(x^2+2xy+y^2)^2-2(x^2+xy+y^2)^2

=x^4+4x^2y^2+y^4+4x^3y+2x^2y^2+4xy^3-2(x^4+x^2y^2+y^4+2x^3y+2x^2y^2+2xy^3)

=-x^4-y^4

=>ĐPCM

Bình luận (0)
HT
Xem chi tiết
DH
14 tháng 1 2018 lúc 14:53

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

Bình luận (0)
HT
14 tháng 1 2018 lúc 14:58

cảm ơn nhiều nha. chúng ta kết bạn được không?

Bình luận (0)
TB
14 tháng 1 2018 lúc 15:01

theo bđt bu-nhi-a cốp-xki thì

(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)

còn bạn chưa biết thì

<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3

,<=>a^2xb^4+b^2xa^4>=2a^3xb^3

<=>(axb^2-a^2xb)^2>=0(luôn đúng)

Bình luận (0)
H24
Xem chi tiết
H24
19 tháng 8 2018 lúc 20:46

mn giúp mk với

Bình luận (0)
KT
19 tháng 8 2018 lúc 23:46

hình như đề sai

bạn vào câu hỏi tương tự nhé

học tốt

Bình luận (0)
VN
Xem chi tiết