Những câu hỏi liên quan
LD
Xem chi tiết
TT
3 tháng 3 2020 lúc 11:27

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 3 2020 lúc 17:32

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
13 tháng 4 2020 lúc 19:17

tìm tham số a cho phương trình - 4x - 3 = 4x - 7 nhận x = 2 là nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
MN
4 tháng 3 2020 lúc 16:10

a) \(ĐKXĐ:x\ne\pm3\)

Với a = -3

\(\Leftrightarrow A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}=\frac{24}{9-x^2}\)

\(\Leftrightarrow\frac{3-x}{x+3}-\frac{x+3}{x-3}+\frac{24}{x^2-9}=0\)

\(\Leftrightarrow\frac{-\left(x-3\right)^2-\left(x+3\right)^2+24}{x^2-9}=0\)

\(\Leftrightarrow-x^2+6x-9-x^2-6x-9+24=0\)

\(\Leftrightarrow-2x^2+6=0\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt{3}\)(tm)

Vậy với \(a=-3\Leftrightarrow x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

b) \(ĐKXĐ:x\ne\pm1\)

Với a = 1

\(\Leftrightarrow A=\frac{x+1}{1-x}-\frac{x-1}{1+x}=\frac{3+1}{1-x^2}\)

\(\Leftrightarrow\frac{x+1}{1-x}-\frac{x-1}{1+x}+\frac{4}{x^2-1}=0\)

\(\Leftrightarrow\frac{-\left(x+1\right)^2-\left(x-1\right)^2+4}{x^2-1}=0\)

\(\Leftrightarrow-x^2-2x-1-x^2+2x-1+4=0\)

\(\Leftrightarrow-2x^2+2=0\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)(ktm)

Vậy với \(a=1\Leftrightarrow x\in\varnothing\)

c) \(ĐKXĐ:a\ne\pm\frac{1}{2}\)

Thay \(x=\frac{1}{2}\)vào phương trình, ta đươc :

\(A=\frac{\frac{1}{2}+a}{a-\frac{1}{2}}-\frac{\frac{1}{2}-a}{a+\frac{1}{2}}=\frac{a\left(3a+1\right)}{a^2-\frac{1}{4}}\)

\(\Leftrightarrow\frac{a+\frac{1}{2}}{a-\frac{1}{2}}+\frac{a-\frac{1}{2}}{a+\frac{1}{2}}-\frac{3a^2+a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow\frac{\left(a+\frac{1}{2}\right)^2+\left(a-\frac{1}{2}\right)^2-3a^2-a}{a^2-\frac{1}{4}}=0\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+a^2-a+\frac{1}{4}-3a^2-a=0\)

\(\Leftrightarrow-a^2-a+\frac{1}{2}=0\)

\(\Leftrightarrow a^2+a-\frac{1}{2}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2-\frac{3}{4}=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}\\a=-\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{-\sqrt{3}-1}{2}\end{cases}}\)(TM)

 Vậy với \(x=\frac{1}{2}\Leftrightarrow a\in\left\{\frac{\sqrt{3}-1}{2};\frac{-\sqrt{3}-1}{2}\right\}\) 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
H24
17 tháng 2 2019 lúc 13:09

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{x-b-a-c}{a+c}+\dfrac{x-c-a-b}{a+b}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a+b+c\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\end{matrix}\right.\)

Xét \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)ĐK: \(\left\{{}\begin{matrix}a\ne-b\\b\ne-c\\c\ne-a\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)+\left(c+a\right)\left(b+c\right)+\left(a+b\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2+ab+bc+ca=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+bc+ca=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab-\left(a+b\right)b-\left(a+b\right)a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab+a^2+b^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)

Vậy với x=a+b+c hoặc a=b=c=0 thì pt thỏa mãn.

Bình luận (0)
LD
Xem chi tiết
TL
Xem chi tiết
LD
Xem chi tiết
NH
Xem chi tiết
NT
17 tháng 5 2016 lúc 19:47

a) thay vô lập đenta giải ra

Bình luận (0)
NT
17 tháng 5 2016 lúc 19:49

b) giải hệ pt 1/x1+1/2x2=1/30

x1+x2=2

xong thay vô

x1*x2=m ok

Bình luận (0)
NT
17 tháng 5 2016 lúc 20:03

giải hệ 1/x1+1/2x2=1/30

và x1+x2=2 

đi

Bình luận (0)
H24
Xem chi tiết
TD
27 tháng 4 2020 lúc 8:44

a) ĐKXĐ : \(x\ne5;x\ne-m\)

Khử mẫu ta được :

\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)

\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)

\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)

Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)

Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)

Để nghiệm trên là nghiệm của PT ban đầu thì ta có :

\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)

Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu

Bình luận (0)
 Khách vãng lai đã xóa
TD
27 tháng 4 2020 lúc 8:49

b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)

PT đã cho đưa về dạng x(m+2) = 2m(4-m)

Nếu m = -2 thì 0x = -24 ( vô nghiệm )

Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)\(x\ne2;x\ne m;x\ne2m\) )

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)

Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)

Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NL
1 tháng 2 2017 lúc 19:05

Giải

Điều kiện xác định của phương trình: \(a\ne0\)

Biến đổi phương trình:

\(\frac{x-a}{3}=\frac{x+3}{a}-2\)

\(\Leftrightarrow a\left(x-a\right)=3\left(x+3\right)-6a\)

\(\Leftrightarrow ax-a^2=3x+9-6a\)

\(\Leftrightarrow ax-3x=a^2-6a+9\)

\(\Leftrightarrow\left(a-3\right)x=\left(a-3\right)^2\)

Nếu \(a\ne3\), phương trình có nghiệm x = a - 3

Nếu a = 3 thì \(\left(a-3\right)x=\left(a-3\right)^2\) có dạng:

0x = 0, mọi x đều là nghiệm.

Bình luận (0)