LD

giải phương trình với các tham số a,b,c:

\(\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3\)

H24
17 tháng 2 2019 lúc 13:09

\(\Leftrightarrow\dfrac{x-a-b-c}{b+c}+\dfrac{x-b-a-c}{a+c}+\dfrac{x-c-a-b}{a+b}=0\)

\(\Leftrightarrow\left(x-a-b-c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a+b+c\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\end{matrix}\right.\)

Xét \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)+\left(b+c\right)\left(c+a\right)+\left(a+b\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)ĐK: \(\left\{{}\begin{matrix}a\ne-b\\b\ne-c\\c\ne-a\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)+\left(c+a\right)\left(b+c\right)+\left(a+b\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+3\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)^2+ab+bc+ca=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+bc+ca=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab-\left(a+b\right)b-\left(a+b\right)a=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\ab+a^2+b^2=0\end{matrix}\right.\)\(\Leftrightarrow a=b=c=0\)

Vậy với x=a+b+c hoặc a=b=c=0 thì pt thỏa mãn.

Bình luận (0)

Các câu hỏi tương tự
II
Xem chi tiết
LD
Xem chi tiết
TV
Xem chi tiết
DL
Xem chi tiết
DV
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
NX
Xem chi tiết
NX
Xem chi tiết