Những câu hỏi liên quan
NM
Xem chi tiết
HK
Xem chi tiết
PV
Xem chi tiết
PH
28 tháng 8 2017 lúc 21:09

đặt a=x/y b=y/z c=z/x thay vào rút gọn ra nesbit

Bình luận (0)
AJ
Xem chi tiết
QL
Xem chi tiết
H24
11 tháng 11 2019 lúc 22:45

Xét vế trái: Bạn nhân cả tử và mẫu với lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

=> cái mẫu thành lần lượt là a(b+c); b(c+a); c(a+b) do abc=1=> a^2.b^2.c^2=1 và tử lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

xong áp dụng cauchy schwarz thôi => vế trái >= (ab+bc+ca)^2/2(ab+bc+ca)=(ab+bc+ca)/2=(ab+bc+ca)/2abc=1/2a+1/2b+1/2c

=> ĐPCM.

Bình luận (0)
 Khách vãng lai đã xóa
NC
11 tháng 11 2019 lúc 22:58

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\)

\(\ge\frac{\left(bc+ac+ab\right)^2}{2\left(ab+ac+bc\right)}\ge\frac{\left(bc+ac+ab\right)}{2}\)

\(=\frac{bc}{2}+\frac{ac}{2}+\frac{ab}{2}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra <=> a =b = c.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
H24
22 tháng 8 2017 lúc 5:35

Ta có: x2 – x – 12 = x2 – x – 16 + 4

= (x2 – 16) – (x – 4)

= (x – 4).(x + 4) – (x – 4)

= (x – 4).(x + 4 – 1)

= (x – 4).(x + 3)

Bình luận (0)
TM
Xem chi tiết
PA
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
2U
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Bình luận (0)
 Khách vãng lai đã xóa
CN
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
TT
28 tháng 8 2015 lúc 7:39

Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)

Khi đó    \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bình luận (0)
LH
Xem chi tiết