Violympic toán 8

H24

cho 0 < a,b,c ≤ 1. Cmr: \(a+b+c+\frac{1}{abc}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+abc\)

AH
5 tháng 7 2019 lúc 18:03

Lời giải:

Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$

Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)

\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)

\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)

\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)

\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)

\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
NH
Xem chi tiết
NB
Xem chi tiết
LS
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
OW
Xem chi tiết
PX
Xem chi tiết
H24
Xem chi tiết