Những câu hỏi liên quan
LY
Xem chi tiết
H24
Xem chi tiết
NG
28 tháng 9 2021 lúc 21:31

Gọi số cần lập là \(\overline{a_1a_2a_3a_4}\)\(=m\in A\)\(a_i\ne a_j\)

a) a1\(\ne\)0\(\Rightarrow\)a1 có 9 cách chọn 

    Xếp 3 chữ số trong 9 chữ số còn lại có \(A_9^3\)

Có tất cả 9*\(A_9^3\)số cần lập

b)Số chẵn a4\(\in\)\(\left\{0,2,4,6,8\right\}\)

   + Với a4=0 có 1 cách chọn

      Xếp 3 số trong A\\(\left\{0\right\}\)vào 3 vị trí còn lại có \(A_9^3\)

      Có 1*\(A_9^3\)số cần lập.

   +Với a4\(\in\)\(\left\{2,4,6,8\right\}\) có 4 cách chọn

     Chọn a1 có 8 cách trong A\(\backslash\left\{0,a_4\right\}\)

     Chọn 2 trong X\(\backslash\left\{a_1,a_4\right\}\) vào 4 vị trí còn lại có \(A_8^2\) số cần lập

     có 4*8*\(A_8^2\)

vậy có tất cả 2269 số cần lập( cộng hai trường hợp trên).

Bình luận (2)
H24
Xem chi tiết
NG
28 tháng 9 2021 lúc 20:49

a)\(A_9^4\)

b)Gọi số cần lập là \(\overline{a_1a_2a_3a_4}=m\)\(\in A\),\(a_i\ne a_j\)

Số cần lập là số chẵn nên a4\(\in\left\{2,4,6,8\right\}\) \(\Rightarrow\) có 4 cách chọn a4

Chọn 3 trong 8 chữ số của A\\(\left\{a_1\right\}\)\(\Rightarrow\)có \(A_8^3\)

có tất cả \(4\cdot A_8^3\)số cần lập

Bình luận (0)
MT
Xem chi tiết
LP
11 tháng 12 2015 lúc 13:34

a) số nhỏ nhất có tám chữ số khác nhau 12345678 chia cho 1111 được thưong nguyên là 11112.
Quy trình: X=X+1:1111X, CALC X? 11112, ==... Đến khi X=X+1=11115 ta được kết quả so nhỏ nhất cần tìm là 12348765.
b) số lon nhất có tám chữ số khác nhau 87654321 chia cho 1111 được thưong nguyên là 78896.
Quy trình: X=X-1:1111X, CALC X? 78897, ==... Đến khi X=X+1=78894 ta được kết quả so lon nhất cần tìm là 12348765.

Bình luận (0)
AN
Xem chi tiết
NL
21 tháng 12 2022 lúc 21:44

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

Bình luận (2)
DT
Xem chi tiết
NT
9 tháng 7 2023 lúc 13:05

a: \(\overline{abc}\)

a có 3 cáhc

b có 4 cáhc

c có 4 cách

=>Có 3*4*4=48 cách

b: \(\overline{abcd}\)

a có 3 cách

b có 3 cách

c có 2 cách

d có 1 cách

=>Có 3*3*2=18 cách

c: \(\overline{abc}\)

c có 1 cách

a có 3 cách

b có 4 cách

=>Có 1*3*4=12 cách

d: \(\overline{abcd}\)

TH1: d=0

=>Có 3*4*4=48 cách

TH2: d<>0

d có 2 cách

a có 3 cách

b có 4 cách

c có 4 cách

=>Có 4*4*3*2=16*6=96 cách

=>Có 144 cách

Bình luận (1)
PH
Xem chi tiết
H24
25 tháng 8 2017 lúc 20:20

Bài 1:Cho A={0;1;2;3;4;5}.Hỏi có thể lập được bao nhiêu số có 4 chữ số khác nhau sao cho tổng hai chữ số đầu nhỏ hơn tổng hai chữ số sau 1 đơn vị

 Bài 2:Với các chữ số 1;2;3;4;5;6 có thể lập được bao nhiêu số tự nhiên thỏa mãn?

a,gồm có 6 chữ số 

b,gồm có 6 chữ số khác nhau 

c,gồm có 6 chữ số và chia hết cho 2

Bài 3:Cho X={0;1;2;3;4;5;6} 

a,Có bao nhiêu số chẵn có 4 chữ số khác nhau đôi một ?

b,Có bao nhiêu chữ số có 3 chữ số khác nhau chia hết cho 5\

c, Có bao nhiêu số có 3 chữ số khác nhau chia hết cho 9 .

Bài 4:Có bao nhiêu số tự nhiên có tính chất.

a,là số chẵn có 2 chữ số không nhết thiết phải khác nhau

b,là số lẻ và có 2 chữ số không nhất thiết phải khác nhau

c,là số lẻ và có hai chữ số khác nhau 

d,là số chẵn và có 2 chữ số khác nhau 

Bài 5:Cho tập hợp A{1;2;3;4;5;6} 

a,có thể lập được bao nhiêu số gồm 4 chữ số khác nhau hình thành từ tập A 

b,có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 2 

c,có thể lập được bao nhiêu số gồm 5 chữ số khác nhau và chia hết cho 5

dài quá

botay.com.vn

Bình luận (0)
TN
Xem chi tiết
VT
6 tháng 3 2016 lúc 9:20

Số chia hết cho 3 thì tổng các chữ số chia hết cho 3 (lớp 3 cũng biết)

Ta nhận thấy 0+1+2+3+4+5+6=21 chia hết cho 3

vậy ta cần bỏ 2 số có tổng chia hết cho 3 

(0;3),(0;6),(1;2),(1;5),(2;4),(3;6)

+) bỏ hai số 0,3 còn 1,2,4,5,6 có 5!=120  số

+) bỏ hai số 1,2 còn 0,3,4,5,6 có 4.4!=96 số

Tương tự cho các trường hợp còn lại: vậy có tất cả 624 số

Bình luận (0)
TN
6 tháng 3 2016 lúc 9:11

Số chia hết cho 3 thì tổng các chữ số chia hết cho 3 (lớp 3 cũng biết)

Ta nhận thấy 0+1+2+3+4+5+6=21 chia hết cho 3

vậy ta cần bỏ 2 số có tổng chia hết cho 3 

(0;3),(0;6),(1;2),(1;5),(2;4),(3;6)

+) bỏ hai số 0,3 còn 1,2,4,5,6 có 5!=120  số

+) bỏ hai số 1,2 còn 0,3,4,5,6 có 4.4!=96 số

Tương tự cho các trường hợp còn lại: vậy có tất cả 624 số

Bình luận (0)
HL
Xem chi tiết
HL
17 tháng 12 2023 lúc 16:08

giúp tui với

Bình luận (0)
NT
17 tháng 12 2023 lúc 21:12

a: Gọi số tự nhiên lập được là \(\overline{abc}\)

a có 5 cách chọn

b có 5 cách chọn

c có 5 cách chọn

Do đó: Có \(5\cdot5\cdot5=125\left(số\right)\) có 3 chữ số lập được từ các chữ số của tập hợp A

b: Gọi số tự nhiên cần tìm có dạng là \(\overline{abc}\)

a có 5 cách chọn

b có 4 cách chọn

c có 3 cách chọn

Do đó: Có 5*4*3=60 số có 3 chữ số khác nhau lập được từ tập hợp A

Bình luận (1)