x^2 + 6x + 5
x^2 - 7x + 12
x^2 -7x + 10
x^2-5x+6
x^2-7x+12
x^2+x-12
x^2-9x+20
2x^2-3x-2
4x^2-7x-2
4x^2+15x+9
Đề yêu cầu gì em?
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
\(x^2-7x+12=\left(x-2\right)\left(x-5\right)\)
\(x^2+x-12=\left(x-5\right)\left(x+6\right)\)
\(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(2x^2-3x+2=2\left(x+\dfrac{1}{2}\right)\left(x-2\right)\)
\(4x^2-7x-2=4\left(x-2\right)\left(x+\dfrac{1}{4}\right)\)
\(4x^2+15x+9=4\left(x+\dfrac{3}{4}\right)\left(x+3\right)\)
Tìm x:
1. ( 4x4 + 3x3 ) : ( -x3) + ( 15x2 + 6x ) : 3x = 0
2. ( 25x2 - 10x) : ( -5x) - 3( x-2) = 4
3. ( 42x3 - 12x ) : ( -6x) + 7x ( x+2) = 8
`1)<=> -4x-3 + 5x+ 2 =0`
`<=> 5x-4x = -2+3`
`<=> x =1`
`2)<=> -5x +2-3x+6 =4`
`<=> -5x-3x = 4-6-2`
`<=> -8x=-4`
`<=> x=1/2`
`3) <=> -7x^2 +2 +7x^2 +14x =8`
`<=> 14x +2 =8`
`<=> 14x = 6`
`<=> x=3/7`
Mn nguoi giúp vs ak.
6x^3-7x^2+5x-2
4x^3+5x^2+10x-12
4x^3-7x^2-x+3
4x^3-5x^2+6x+9
x^3-12x^2+14x-4
3x^3-5x^2+5x-2 mn phân tích bằng phường pháp hệ so bất dinh nha
6x3 - 7x2 + 5x - 2
= 6x3 - 4x2 - 3x2 + 2x + 3x - 2
= 6x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(6x2 - 3x + 3)
= 3(x - 2/3)(2x2 - x + 1)
4x3 + 5x2 + 10x - 12
= 4x3 - 3x2 + 8x2 - 6x + 16x - 12
= 4x2(x - 3/4) + 8x(x - 3/4) + 16(x - 3/4)
= (x - 3/4)(4x2 + 8x + 16)
= 4(x - 3/4)(x2 + 2x + 4)
4x3 - 7x2 - x + 3
= 4x3 - 3x2 - 4x2 + 3x - 4x + 3
= 4x2(x - 3/4) - 4x(x - 3/4) - 4(x - 3/4)
= (x - 3/4)(4x2 - 4x - 4)
= 4(x - 3/4)(x2 - x - 1)
4x3 - 5x2 + 6x + 9
= 4x3 + 3x2 - 8x2 - 6x + 12x + 9
= 4x2(x + 3/4) - 8x(x + 3/4) + 12(x + 3/4)
= (x + 3/4)(4x2 - 8x + 12)
= 4(x + 3/4)(x2 - 2x + 3)
3x3 - 5x2 + 5x - 2
= 3x3 - 2x2 - 3x2 + 2x + 3x - 2
= 3x2(x - 2/3) - 3x(x - 2/3) + 3(x - 2/3)
= (x - 2/3)(3x2 - 3x + 3)
= 3(x - 2/3)(x2 - x + 1)
1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
2) x2 + 3x + 2 = x2 + 2x + x + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)
3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)
4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)
5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)
7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)
8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)
9) 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
10) 6x2 + 15x + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)
11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)
12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
Bài 1
a) 2x^3 + 5x^2 + 5x + 3
b) 4x^3 + x^2 + x - 3
c) 5x^3 - 12x^2 + 14x - 4
d) 6x^3 - 7x^2 + 5x - 2
e) 3x^3 + 19x^2 + 4x - 12
\(a,2x^3+5x^2+5x+3\)
\(=2x^3+3x^2+2x^2+3x+2x+3\)
\(=x^2\left(2x+3\right)+x\left(2x+3\right)+\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x^2+x+1\right)\)
b) = 4x^3 - 3x^2 + 4x^2 - 3x + 4x - 3
= x^2(4x-3) + x(4x - 3) + 4x - 3
= (4x - 3)(x^2 + x + 1)
c) = 5x^3 - 2x^2 - 10x^2 + 4x + 10x - 4
= x^2(5x - 2) - 2x(5x - 2) + 2(5x - 2)
= (5x - 2)(x^2 - 2x + 2)
d)= 6x^3 - 4x^2 - 3x^2 + 2x + 3x - 2
= 2x^2(3x - 2) - x(3x - 2) + (3x - 2)
= (3x-2)(2x^2-x+1)
e) = 3x^3 - 2x^2 + 21x^2 - 14x + 18x - 12
= x^2( 3x - 2) + 7x(3x - 2) + 6(3x - 2)
= (3x - 2)(x^2 + 7x + 6)
= (3x - 2)(x+1)(x+6)
Bài 1: Tìm nghiệm của đa thức sau:
a)\(4x^2-7x+3\)
b)\(3x^2-7x+4\)
c)\(5x^2+7x+2\)
d)\(6x^2-5x+1\)
e)\(12x^2-x-6\)
f)\(3x^2-7x+2\)
a) \(4x^2-7x+3=4x^2-4x-\left(3x-3\right)\)
\(=4x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(4x-3\right)\)
Cho đa thức trên bằng 0 và tự tìm nghiệm:D
b)\(3x^2-7x+4=3x^2-3x-4x+4\)
\(=3x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(3x-4\right)\)
Cho đa thức trên bằng 0 và tự tìm nghiệm:D
c) \(5x^2+7x+2=5x^2+5x+2x+2=5x\left(x+1\right)+2\left(x+1\right)=\left(x+1\right)\left(5x+2\right)\)
Cho đa thức trên bằng 0 và tự tìm nghiệm:D
d) \(6x^2-5x+1=6x^2-3x-2x+1=3x\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(3x-1\right)\)
Cho đa thức trên bằng 0 và tự tìm nghiệm:D
e) Tương tự
f)\(3x^2-6x-x+2=3x\left(x-2\right)-\left(x-2\right)=\left(3x-1\right)\left(x-2\right)\)
Cho đa thức trên bằng 0 và tự tìm nghiệm:D
a) \(4x^2-7x+3\)
\(=4x^2-4x-3x+3\)
\(=4x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(4x-3\right)\left(x-1\right)\)
b) \(3x^2-7x+4\)
\(=3x^2-3x-4x+4\)
\(=3x\left(x-1\right)-4\left(x-1\right)\)
\(=\left(3x-4\right)\left(x-1\right)\)
c)\(5x^2+7x+2\)
\(=5x^2+5x+2x+2\)
\(=5x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(5x+2\right)\left(x+1\right)\)
d) \(6x^2-5x+1\)
\(=6x^2-3x-2x+1\)
\(=3x\left(2x-1\right)-\left(2x-1\right)\)
\(=\left(3x-1\right)\left(2x-1\right)\)
e) \(12x^2-x-6\)
\(=12x^2-9x+8x-6\)
\(=3x\left(4x-3\right)+2\left(4x-3\right)\)
\(=\left(3x+2\right)\left(4x-3\right)\)
f) \(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(3x-1\right)\left(x-2\right)\)
Bài 1 : Phân tích đa thức thành nhân tử :
a) X^2 – 5x +6 b ) 3x^2 + 9x – 30 c) x^2 – 3x + 2
d)X^2 – 9x + 18 e) x^2 -6x + 8 f) x^2 -5x -14
g) x^2 + 6x +5 h) x^2 – 7x +12 i) x^2 – 7x+ 10
Bài 2 :
a) 3x^2 – 5x 2
b) 2x^2 + x -6
c) 7x^2 + 50x +7
d) 12x^2 +7 – 12
e) 15x^2 + 7x-2
f) A^2 -5a – 14
g) 2m^2 + 10m + 8
h) 4p^2 – 36p + 56
i) 2x^2 + 5x + 2
Bài 1
a) 2x^3 + 5x^2 + 5x + 3
b) 4x^3 + x^2 + x - 3
c) 5x^3 - 12x^2 + 14x - 4
d) 6x^3 - 7x^2 + 5x - 2
e) 3x^3 + 19x^2 + 4x - 12