Những câu hỏi liên quan
AM
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
7 tháng 4 2020 lúc 17:45

Ta có : \(\sqrt{x-5}-\sqrt{4x-20}-\frac{1}{5}.\sqrt{9x-45}=3\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\frac{1}{5}\sqrt{9\left(x-5\right)}=3\)

\(\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\frac{3}{5}\sqrt{x-5}=3\left(^∗\right)\)

Đặt \(\sqrt{x-5}=t,\hept{\begin{cases}t>0\\x\ge5\end{cases}}\)

Từ (*) ta có : \(t+2t+\frac{-3}{5}t=3\)

\(\Leftrightarrow5t+10t-3t=15\)

\(\Leftrightarrow t=\frac{5}{4}\left(t/m\right)\)

\(\Leftrightarrow\sqrt{x-5}=\frac{5}{4}\)

\(\Leftrightarrow x-5=\frac{25}{16}\)

\(\Leftrightarrow x=\frac{105}{16}\)

Nghiệm cuối của phương trình là : \(\left\{\frac{105}{16}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
4 tháng 7 2020 lúc 19:16

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
H9
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
NO
Xem chi tiết
TH
16 tháng 9 2018 lúc 7:48

ĐK: \(x\ge0\)\(4\sqrt{x}-2\sqrt{9x}+16\sqrt{x}=5\)  5  (=) \(\sqrt{x}\left(4-2\sqrt{9}+16\right)=5\) (=) \(\sqrt{x}.14=5\)(=) x=\(\frac{25}{196}\)

ĐK: \(x\ge-5\)PT(=) \(\sqrt{5+x}\left(\sqrt{4}-3+\frac{4}{3}.3\right)=6\) (=) \(\sqrt{5+x}.3=6\) (=)\(\sqrt{5+x}=2\)(=) X = -1 (nhận)

Bình luận (0)
PL
Xem chi tiết
NT
5 tháng 9 2023 lúc 14:32

a: ĐKXĐ: x>=3

Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)

=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)

=>\(\dfrac{3}{2}\sqrt{x-3}=3\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7(nhận)

b: ĐKXĐ: x>=0

\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)

=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)

=>\(7\sqrt{x}-5< =0\)

=>\(\sqrt{x}< =\dfrac{5}{7}\)

=>0<=x<=25/49

c: ĐKXĐ: x>=5

\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)

=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)

=>\(\dfrac{3}{2}\sqrt{x-5}=3\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

Bình luận (0)
PT
Xem chi tiết
AH
16 tháng 7 2020 lúc 14:01

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

Bình luận (0)
AH
16 tháng 7 2020 lúc 14:09

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

Bình luận (0)
gh
Xem chi tiết
LD
25 tháng 10 2020 lúc 22:11

a) \(\sqrt{\left(2x-1\right)^2}=3\)

⇔ \(\left|2x-1\right|=3\)

⇔ \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

⇔ \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

b) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

ĐKXĐ : \(x\ge0\)

⇔ \(3\sqrt{x}-2\sqrt{3^2x}+\sqrt{4^2x}=5\)

⇔ \(3\sqrt{x}-2\cdot3\sqrt{x}+4\sqrt{x}=5\)

⇔ \(7\sqrt{x}-6\sqrt{x}=5\)

⇔ \(\sqrt{x}=5\)

⇔ \(x=25\)( tm )

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐKXĐ : \(x\ge-5\)

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot3\sqrt{x+5}=6\)

⇔ \(-\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\left(tm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa